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a b s t r a c t

This paper proposes a new connectivity-preserving protocol in terms of rectangle-like regions. The
protocol consists of a set of distributed control rules; their working together guarantees the network
connectivity as well as rendezvous of a discrete-time multi-agent system. It is assumed that all agents
share a common minimum sensing radius, but the information exchange may suffer from link failure
and recovery. Consequently, the interaction topology is in fact directed and time-varying. By rigorous
mathematical arguments, we show the effectiveness and robustness of the protocol in the presence of
alignment errors in local coordinate orientations of agents and measurement errors in relative positions
of neighbors. We also present simulations to demonstrate the effectiveness of the theoretical results.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Connectivity preservation is an interesting and challenging
topic in studying the stability and controllability of distributed
multi-agent networks (Ji, Wang, Lin, &Wang, 2009; Lin, Broucke, &
Francis, 2004; Tanner, 2004; Xie & Wang, 2009) and has attracted
a great deal of attention from a number of researchers. This
paper studies the connectivity preservation in the framework of
rendezvous control of directed networks.

In recent studies of rendezvous problems, numerous protocols
have been proposed for different practical situations (Dimarog-
onas & Kyriakopoulos, 2007; Fagnani, Johansson, Speranzon, &
Zampieri, 2004; Lin, Francis, & Maggiore, 2005; Litus, Zebrowski, &
Vaughan, 2009; Smith, Broucke, & Francis, 2007). As for the con-
cern with connectivity preservation, the circumcenter algorithm
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is a well-known rendezvous protocol, proposed for a group of
mobile robots with limited visibility in Ando, Oasa, Suzuki, and Ya-
mashita (1999). The circumcenter algorithm is a distributed mem-
oryless protocol and its validity of driving all robots to gather at
a common location was proved under the assumptions that each
robot is able to track its neighbors’ positions instantaneously and
every pair of robots are mutually visible. In the subsequent stud-
ies, the circumcenter algorithm has been generalized in various
ways, for example, the synchronous and the asynchronous ver-
sions with continuous-time dynamics (Lin, Morse, & Anderson,
2007a,b), and the extended versions with milder discontinuous
control laws (Conte & Pennesi, 2010) and with noisy measure-
ments (Martínez, 2009). There are also some other representative
connectivity-preserving rendezvous protocols, including the ones
based on the distributed gradientmethod (Ji & Egerstedt, 2007) and
the spectral analysis of interaction graphs (Yang et al., 2010; Za-
vlanos & Pappas, 2007). However, these algorithms are all built on
the critical assumption of bidirectional interactions.

Different from ensuring connectivity directly by control laws,
there exists some other relatedwork,which considers the relation-
ship between network connectivity and model parameters, and
presents various sufficient conditions for connectivity preserva-
tion. In Sun and Huang (2009), the authors provided an initial-
connectivity-based sufficient condition in terms of the degree of
each node for dynamic connectivity under the linear feedback
protocol, proposed in Olfati-Saber and Murray (2004). In Gus-
tavi, Dimarogonas, Egerstedt, and Hu (2010), by studying the ef-
fect of the ratio of leaders-to-followers and the magnitude of
goal attraction forces experienced by leaders on connectivity, the

http://dx.doi.org/10.1016/j.automatica.2011.09.027
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:fxiao@ece.ualberta.ca
mailto:longwang@pku.edu.cn
mailto:tchen@ece.ualberta.ca
http://dx.doi.org/10.1016/j.automatica.2011.09.027


26 F. Xiao et al. / Automatica 48 (2012) 25–35
authors presented connectivity-preserving conditions for a com-
plete graph and a special case of incomplete graphs. We observe
that so far these studied protocols have not been integrated with
connectivity-preserving control rules and thus the given sufficient
conditions are very conservative and depend on the network struc-
tures; this restricts their applications in practical distributed con-
trol tasks.

The main contribution of this paper is to present a new pro-
tocol for connectivity preservation in the rendezvous control of a
discrete-time multi-agent system. The protocol is formulated by
a collection of rectangle-like regions, and consists of several dis-
tributed control rules as well as a convex combination restriction,
which guarantee that the distance between neighboring agents
cannot exceed the minimum sensing radius, shared by all agents,
and all agents will be eventually gathered at a common place. The
novelty of this paper is summarized as follows.

First, the proposed protocol is a new direct connectivity-
preserving control law, and it is effective in time-varying directed
networks. This paper assumes that all agents share a common
minimum sensing radius. Due to the limitation of on-board
sensing instruments, directional sensing area, and the existence
of obstacles, this paper further assumes that the information
exchange may suffer from link failure and recovery, and thus
the interaction topology is in fact time-varying, and it is directed
at each time instant. These weak restrictions are natural and
ubiquitous inmany applications but theymake the protocol design
very challenging. Thus they are usually unseen in previous direct
connectivity-preserving algorithms, such as various versions of the
circumcenter algorithm (Ando et al., 1999; Conte & Pennesi, 2010;
Lin et al., 2007a,b; Martínez, 2009), distributed gradient protocol
(Ji & Egerstedt, 2007) and spectral analysis protocol (Yang et al.,
2010; Zavlanos & Pappas, 2007).

Second, the proposed protocol is with memory, contrary to the
memoryless circumcenter algorithm (Ando et al., 1999); but this
propertymakes the usage of delayed information possible,which is
natural inmany practical situations. Furthermore, the protocol can
be easily modified for the case with communication time delays;
this feature distinguishes our protocol from others.

Third, by rigorous mathematical arguments, we show the
effectiveness and robustness of the protocol in the presence of
alignment errors in local coordinate orientations of agents and
measurement errors in relative positions of neighbors. This paper
assumes that each agent possesses a local Cartesian coordinate
system. At each time, the subsequent position of each agent is
selected from the intersection of a collection of rectangle regions,
which are related to its local coordinate system. To ensure the
proposed protocol to work efficiently, these local coordinate
orientations should be aligned with each other by some consensus
algorithms (Cortés, 2009; Ren & Beard, 2005), but here two kinds
of alignment errors, namely,maximum static errors andmaximum
sum errors, are acceptable. Moreover, we also give an upper bound
for allowable measurement errors without losing the network
connectivity.

Finally, the theoretical work of this paper is a contribution to
the development of network controllability theory and consensus
theory; moreover, it has some potential applications in the
formation ofmulti-agent systems. The consensus problem includes
the rendezvous problem as a special case, and it emphasizes
more abstract agreement quantities. Instances of them other
than positions include anticipated attitude in multiple space-
craft alignment, velocity in flocking control, etc. (Lin, Francis, &
Maggiore, 2007; Olfati-Saber, Fax, & Murray, 2007; Ren, Beard,
& Atkins, 2007). This work is an extension to our previous
result, presented in Xiao and Wang (2008), in which we proved
the effectiveness of a class of consensus protocols with time-
varying delays and switching interaction topologies. This paper
develops additional connectivity-preserving control rules for the
state-dependent graph case and shows their compatibilitywith the
convex combination consensus protocols, the extended versions
of the Vicsek model (Vicsek, Czirók, Ben-Jacob, Cohen, & Schochet,
1995), proposed in Xiao andWang (2008). Similar control ideas can
be applied in the formation control of directed networks.

This paper is organized as follows. The preliminary notion is
assembled in Section 2. The model is set up in Section 3; and the
rendezvous and connectivity-preserving results are presented in
Sections 4 and 5, respectively. Simulations are given in Section 6.
Finally, concluding remarks are stated in Section 7. In the
Appendix, the proof of the convergence result with measurement
errors is attached.

2. Preliminaries

In this section,we introduce several notions in graph theory and
list some useful notation for later reference; for further details, see
Xiao and Wang (2008) and Godsil and Royal (2001).

A directed graph G consists of a vertex set V(G) and an edge set
E(G) ⊂ V(G) × V(G). Let V(G) be {v1, v2, . . . , vn}. A path in a
directed graph G from vi1 to vik is a sequence vi1 , vi2 , . . . , vik of
finite vertices such that (vij , vij+1) ∈ E(G) for j = 1, 2, . . . , k − 1.
A directed graph G is said to have a spanning tree if there exists a
vertex, called the root, such that it can be connected to all other
vertices through paths. If for any i, j, (vi, vj) ∈ E(G) implies that
(vj, vi) ∈ E(G), then G is undirected. In this case, G is connected if G
has a spanning tree.
Notation. Let In = {1, 2, . . . , n}, and let ‖ · ‖∞ and ‖ · ‖2 represent
the maximum norm and Euclidean norm respectively. For any set
of vectors S and any matrix A with compatible dimensions, AS =

{Aξ : ξ ∈ S}. For any point ξ ∈ R2, let ξ (1) and ξ (2) denote its first
and second coordinates respectively; i.e., ξ = [ξ (1), ξ (2)

]
T . Given a

point p ∈ R2 in the global coordinate system and angle θ ∈ R, let
O(p, θ) denote the local coordinate systemwith p as its origin and
θ as the axis angle difference from the global coordinate axes.

3. Problem formulation

The objective of this paper is to present a distributed control
protocol for the rendezvous and connectivity preservation of a
group of agents, moving in a two-dimensional plane. As we will
see, the main results can be extended easily to high-dimensional
cases. This section will formulate the problem to be studied.

Suppose that the multi-agent system consists of n agents,
labeled 1 through n. Let pi(t) ∈ R2 denote the position of agent i at
time t in a given global Cartesian coordinate system and suppose
that each agent i possesses amoving (time-varying) local Cartesian
coordinate system, denoted by Oi(t), with agent i located at the
origin. For convenience, denote the angle difference between the
coordinate axes of Oi(t) and the global coordinate axes by θi(t).
Then we have Oi(t) = O(pi(t), θi(t)), as shown in Fig. 1. In the
sequel, we use pj|Oi(t) = [p(1)

j |Oi(t), p
(2)
j |Oi(t)]

T to denote the co-
ordinates of agent j in the local coordinate system Oi(t). Clearly,
pj(t)|Oi(t) represents the relative position of agent j, related to agent
i, and pi(t)|Oi(t) = 0.

The main results of this paper will be developed based on the
assumption that the local coordinate orientations of all agents
have already been aligned with each other, but alignment errors
are allowable. For convenience, the global coordinate system is
assumed to be with the closest orientation in some metric to
all of the local coordinate systems. Therefore, θi(t) represents
the orientation alignment error of the local coordinate system
Oi(t). This coordinate orientation alignment can be achieved
by performing the traditional asymptotical consensus algorithms
(Olfati-Saber & Murray, 2004; Ren & Beard, 2005) or finite-time
consensus algorithms (Wang&Xiao, 2010). Interested readersmay
also refer to Cortés (2009) for possible alignment strategies.
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Fig. 1. The local coordinate system Oi(t), where O, x, y represent the global origin
and the unit vectors for the global horizontal and vertical axes, respectively, and xi
and yi represent the unit vectors for the local horizontal and vertical axes of Oi(t),
respectively.

With the abovepreparations, assume that agent i in the network
is governed by the following discrete-time equation:
pi(t + 1)|Oi(t) = ui(t), t ∈ N, (1)
where ui(t) is a distributed state feedback, called protocol or
algorithm, to be designed based on the relative positions of agents
within the local sensing range of agent i. In the global coordinate
system, Eq. (1) can be equivalently represented by
pi(t + 1) = pi(t) + Θ(θi(t))ui(t), t ∈ N, (2)
where

Θ(θi(t)) =

[
cos(θi(t)) − sin(θi(t))
sin(θi(t)) cos(θi(t))

]
is a rotation matrix.

To characterize the interaction topology among agents, assume
that each agent has a limited sensing range and can measure
the relative positions of agents within the range. The sensing
areas of different agents may be in different shapes, depending
on the on-board sensing instruments and outside environments.
Furthermore, assume that there exists a common minimum
sensing radiusR, that is, if‖pi−pj‖2 ≤ R, thenby rotating detectors,
agent i has the possibility of getting the relative position of agent
j, and vice versa. Then the adjacency relations between agents,
determined by R, can be modeled by an undirected proximity
graph. However, because of the irregular detection areas of agents,
existence of obstacles, or external interference, it is in fact true
that agent i cannot measure the position information of all agents
within the distance of R. In other words, the information exchange
between agents may suffer from link failure.

It is assumed the failed links are recoverable. Specifically, there
exists a common recovery time T ∈ N, such that if‖pj(k)−pi(k)‖2 ≤

R for all k, t ≤ k ≤ t + T , then agent i should obtain the relative
position of agent j at some time in the time interval [t, t + T ], and
it is also true for agent j, but its successful measurement may not
occur at the same time as agent i. Therefore, if T = 0, then no link
failure occurs, and if T ≥ 1, then the interaction between agents is
not bidirectional.

4. Rendezvous protocol in the general form

This section will present the rendezvous protocol based on the
above assumption and perform its convergence analysis. The form
of the protocol is quite general, and it leaves open the possibility
of being combined with additional connectivity-preserving rules,
given in the next section.

4.1. Registered interaction topology

With link failure, the information of neighbors, determined by
the minimum sensing radius R, may be lost. To ensure the failed
links recover in time, we should consider the usage of delayed
information in the design of protocol ui, and thus introduce an
important concept, ‘‘registered interaction topology’’.

Let D with 0 < D <
√
2R
2 be the registering radius, which is

a protocol parameter. For any i, if agent i gets the instantaneous
relative position vector,2 pj(t)|Oi(t), of agent j at time t , and
‖pj(t)|Oi(t)‖∞ ≤ D, then agent i may register agent j as one of its
neighbors and preserve its role for the next T time steps. Denote
all registered neighbors of agent i at time t by Ni(t). At any time t ,
if j ∈ Ni(t − 1) and the relative position of agent j, pj(t)|Oi(t), with
‖pj(t)|Oi(t)‖2 ≤ R, is obtained again by agent i, then the ‘‘registered
neighbor’’ role is renewed and preserved for the next T time steps.

Definition 1 (Registered Interaction Topology G(t)). The registered
interaction topology G(t) is a directed graph with vertex set
V(G(t)) = {v1, v2, . . . , vn} modeling the agents, and (vj, vi) ∈

E(G(t)) if and only if j ∈ Ni(t).

Remarks.
(1) Note that the registered interaction topology G(t) is not the

real topology of information channels; but it in fact reflects the
union of information channels over the latest T +1 time steps;
as wewill see,G(t) is strongly related to the proposed protocol
and its edges indicate the inter-usage of information between
agents.

(2) Recall the assumption of link failure and recovery. If agent i
registers agent j as one of its neighbors at time t0 and ‖pj(t) −

pi(t)‖2 ≤ R for all t with t0 ≤ t ≤ t1, then it follows from the
renewal strategy of ‘‘registered neighbor’’ role that j ∈ Ni(t)
for all t, t0 ≤ t ≤ t1.

4.2. Rendezvous protocol and convergence analysis

To present the rendezvous protocol in a compact form, we
need to introduce two point sets. Let WL and WU be real numbers
such that 0 < WL ≤ WU . For each agent i, the first point set is a
rectangle, defined by

D rect
i (t, 1θ) =


ξ ∈ R2

: ξ (1)
=

1∑
j∈Ni(t)∪{i}

W ′

ij

×

−
j∈Ni(t)

W ′

ijp
(1)
j (t − τij(t))|O(pi(t),θi(t)+1θ),

ξ (2)
=

1∑
j∈Ni(t)∪{i}

W ′′

ij

×

−
j∈Ni(t)

W ′′

ij p
(2)
j (t − τij(t))|O(pi(t),θi(t)+1θ),

WL ≤ W ′

ij ≤ WU ,WL ≤ W ′′

ij ≤ WU


.

In the above equation, t−τij(t)denotes the latest time, atwhich the
instantaneous position of agent j, with ‖pj(t−τij(t))|Oi(t−τij(t))‖2 ≤

R, is obtained by agent i. Then by the definition of registered
neighbors, 0 ≤ τij(t) ≤ T . Here, it should be assumed that by local
information, agent ihas the capability to calculate pj(t−τij(t))|Oi(t).
We give an example to illustrate the iterative computing process.
Clearly, if τij(t) = 0, it has been assumed that the instantaneous
information pj(t)|Oi(t) is obtained by agent i at time t . If τij(t) ≥ 1,
suppose that pj(t − 1 − τij(t − 1))|Oi(t−1) is obtained by agent i.

2 If this assumption is relaxed by the one of getting time delayed relative
positions, the main results are still obtainable as long as the maximum time delay
can be estimated.
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Fig. 2. Illustration of Di(t) for agent i with two registered neighbors, where
Dcore

i (t) is defined by Eq. (6).

Then pj(t − τij(t))|Oi(t) can be calculated by
pj(t − τij(t))|Oi(t) = Θ(θi(t − 1) − θi(t))

×


pj(t − 1 − τij(t − 1))|Oi(t−1) − ui(t − 1)


.

Assume that each agent has an estimation of the upper bound of
its axis error θi(t), denote by eθ

i (t), such that for any i, t, |θi(t)| ≤

eθ
i (t). Then the second point set is defined by

Di(t) =


|1θ |≤eθi (t)

Θ(1θ)D rect
i (t, 1θ).

The illustration of Di(t) is shown in Fig. 2. Clearly, Di(t) is a
rectangle-like polytope if eθ

i (t) is sufficiently small. Then the
rendezvous protocol is given in the following form:
ui(t) ∈ Di(t), i ∈ In, t ∈ N. (3)
Note that
ui(t) ∈ Θ(−θi(t))D rect

i (t, −θi(t)),
and the coordinate axes of O(pi(t), 0) are parallel to those of the
global coordinate system. Thus, it follows from Eq. (2) that in the
global coordinate system, protocol (3) has the following form:

p(k)
i (t) =

1∑
j∈Ni(t)∪{i}

αk
ij(t)

×

 −
j∈Ni(t)

αk
ij(t)p

(k)
j (t − τij(t)) + αk

ii(t)p
(k)
i (t)


,

k = 1, 2, (4)
where WL ≤ αk

ij(t) ≤ WU .
Clearly, the above protocol is in fact a revised version of

the consensus protocol, presented in Xiao and Wang (2008), but
protocol (3) is more appropriate for the high-dimensional case (R2

in this paper) in the absence of an agreement of a global coordinate
system; and it is also compatible with the connectivity-preserving
rules, proposed in the subsequent subsection.

As a direct subsequence of Theorem 2 in Xiao andWang (2008),
we have the following convergence result.

Theorem 1 (Convergence). If the registered interaction topology
G(t) with recovery time T and registering radius D always contains
a spanning tree, then protocol (3) solves the rendezvous problem;
i.e., there exists a common value p∗

∈ R2, such that limt→∞ pi(t) =

p∗ for any i ∈ In.

Remark. The above conclusion still holds if the union of registered
interaction topology G(t) contains a spanning tree periodically.
5. Connectivity-preserving control

This section will present the connectivity-preserving results
of this paper. The first two subsequent add two additional
connectivity-preserving rules into the protocol (3) and provide suf-
ficient conditions for their compatibility respectively. The last two
subsections show the effectiveness in connectivity preservation
and the robustness against measurement errors respectively.

5.1. Additional control rules for connectivity preservation

This subsection provides the following Rules (R1, R2) in the
selection of local feedback ui(t) from Di(t) for the network
connectivity preservation:
(R1): for any i and t, ‖ui(t)‖∞ ≤ S, where S is maximum step

length such that D + (T + 1)S ≤

√
2R
2 ;

(R2): for any i ∈ In, t ∈ N, j ∈ Ni(t), and any k ∈ {1, 2}, if
p(k)
j (t − τij(t))|Oi(t) ≥ D, then u(k)

i (t) ≥ 0, and if p(k)
j (t −

τij(t))|Oi(t) ≤ −D, then u(k)
i (t) ≤ 0.

Rule (R2) says that registering radius D is a critical distance in
the sense that if the relative distance ‖pj(t−τij(t))|Oi(t)‖∞ between
agent i and its registered neighbor j is larger than D, then agent i
will try to avoid further increasing of the distance between them.
However, because of link failure and alignment errors in local
coordinate orientations, the increase of the distance cannot be
avoided. So it is required that registering radius D and maximum
step length S should be small enough so that D+ (T + 1)S is much
less than sensing radius R. Furthermore, another upper bound on
the maximum step length S can be added into Rule (R1) in some
practical applications, especially in the case with input saturation
restriction. In Section 5.3, explicit upper bounds on S and D will
be given to ensure the connectivity. On the other hand, since the
movement restriction of agents in Rule (R2) is described in each
local coordinate direction, it is convenient to choose maximum
norm ‖ · ‖∞, instead of Euclidean norm ‖ · ‖2, to represent the
distance; and in this sense, the sensing radius becomes

√
2R
2 .

5.2. Compatibility with the rendezvous protocol

This subsection gives sufficient conditions, in terms of parame-
ters WU and WL, so that we can always find proper local feedback
ui(t) in Di(t), satisfying Rules (R1, R2); i.e., Rules (R1, R2) are com-
patible with the rendezvous protocol in the form of Eq. (3).

Theorem 2 (Compatibility). Assume that for all t with t ′ < t, the
control law ui(t ′) is selected according to Rule (R1); i.e.,

ui(t ′)


∞
≤

S, t ′ < t; the maximum alignment error eθ
max = sup{eθ

i (t) : t ∈

N, i ∈ In} is small enough so that eθ
max < arctan


min


D

2R0
, S

4R0


,

and WU and WL meet the following condition:
(C1):

WU

WL
≥ max


N


R0

S − 2R0 tan(eθ
max)

− 1


,

(N − 1)R0
+ 2R0N tan(eθ

max)

D − 2R0 tan(eθ
max)


,

where R0
= R +

√
2TS cos


π
4 − 2eθ

max


,N = maxi,t |Ni(t)|, and

|Ni(t)| denotes the cardinality of set Ni(t). Then we can always find
ui(t) ∈ Di(t), satisfying Rules (R1, R2).

Remarks.
(1) It can be observed in Condition (C1) that the choice of

parametersWU andWL depends solely on the values of R,D, T ,
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Fig. 3. Proof of Lemma 2.

S, eθ
max and N; and the larger the maximum alignment error

eθ
max and recovery time T are, the larger WU

WL
is required to

be. N is the only parameter depending on the evolution of
the system. However, it can be roughly estimated that N ≤

n − 1. Moreover, it will be shown that the initial network
connectivity will be preserved under Rules (R1, R2). Thus if we
assume that no additional edge is added into the registered
interaction topology, then N = maxi |Ni(0)|, which can be
estimated more accurately.

(2) The condition that eθ
max < arctan


min


D

2R0
, S

4R0


and (C1),

provided in Theorem 2, are just sufficient for compatibility;
they could be somewhat conservative.

(3) Following the proof of Theorem 2, we will provide a feasible
distributed numerical algorithm for the choice of ui from Di(t)
for each agent iwithout knowing the specific values ofWL and
WU .

To show the above theorem, we need to give a further
discussion on the properties of point sets D rect

i (t, 0) and Di(t).
Lemma 1 gives an upper bound of the side length of D rect

i (t, 0).

Lemma 1. Under Rule (R1), for any i ∈ In, t ∈ N, j ∈ Ni(t), τij(t) ≤

T , if eθ
max ≤

π
8 , then ‖pj(t − τij(t))|Oi(t)‖∞ ≤ R0; and thus the

maximum side length of D rect
i (t, 0) is not greater than 2R0.

Proof. If T = 0, the result is obvious. Assume that T ≥ 1. Then

pj(t − τij(t))|Oi(t) = pi(t − τij(t))|Oi(t) + Θ(θi(t − τij(t))
− θi(t))pj(t − τij(t))|Oi(t−τij(t))

= Θ(−θi(t))(pi(t − τij(t)) − pi(t)) + Θ(θi(t
− τij(t)) − θi(t))pj(t − τij(t))|Oi(t−τij(t))

= Θ(−θi(t))


−Θ(θi(t − τij(t)))ui(t − τij(t))

− Θ(θi(t − τij(t) + 1))ui(t − τij(t) + 1)

− · · · − Θ(θi(t − 1))ui(t − 1)


+ Θ(θi(t − τij(t)) − θi(t))pj(t
−τij(t))|Oi(t−τij(t)),

where the last equation follows from Eq. (2). Note that ‖pj(t −

τij(t))|Oi(t−τij(t))‖2 ≤ R. We get

‖pj(t − τij(t))|Oi(t)‖∞

≤ R +
√
2TS max

0≤e′≤eθmax

cos
π

4
− 2e′


= R0. �
The next lemma gives a connection between sets Di(t) and
D rect

i (t, 0).

Lemma 2. For any i, t, and any ξ ∈ D rect
i (t, 0), if eθ

max < π
4 , then

there exists ζ ∈ Di(t) such that

‖ξ − ζ‖∞ ≤ 2R0 tan(eθ
max). (5)

Proof. If ξ ∈ Di(t), then we choose ζ = ξ , which satisfies in-
equality (5).

Suppose that ξ ∉ Di(t). Note that D rect
i (t, 0) is the minimum

rectangle covering Di(t), with sides parallel to the coordinate axes
of Oi(t). Therefore, there exist at most four maximum continuous
regions in D rect

i (t, 0), not intersected with Di(t), and they should
be located at the four corners of the rectangle D rect

i (t, 0).
Without loss of generality, suppose that ξ belongs to the

region at the upper left corner. Then there exist ζ1, ζ2 ∈ Di(t),
such that ζ

(1)
1 = ξ (1), ζ

(2)
1 < ξ (2), ζ (1)

2 > ξ (1), and ζ
(2)
2 = ξ (2). If

|ζ
(2)
1 −ξ (2)

| ≤ 2R0 tan(eθ
i (t)) or |ζ

(1)
2 −ξ (1)

| ≤ 2R0 tan(eθ
i (t)), then

we can choose ζ = ζ1 or ζ = ζ2.
If none of the above cases holds, then by the definition of Di(t),

it can be shown that ζ3 ∈ Di(t), as depicted in Fig. 3. Since themax-
imum side length ofD rect

i (t, 0) is not greater than 2R0, |ζ
(1)
3 −ξ (1)

|

and |ζ
(2)
3 − ξ (2)

| are no greater than 2R0 tan(eθ
max). Thus ‖ζ3 −

ξ‖∞ ≤ 2R0 tan(eθ
i (t)) ≤ 2R0 tan(eθ

max) and ζ = ζ3 is a suitable
choice. �

Proof of Theorem 2. Define the set

Dcore
i (t) =


ξ =

1∑
j∈Ni(t)∪{i}

Wij

−
j∈Ni(t)

Wijpj(t − τij(t))|Oi(t) :

WL ≤ Wij ≤ WU


. (6)

Clearly, Dcore
i (t) ⊂ Di(t), see Fig. 2 for its illustration.

Step 1: We first prove that there exists ξ ∈ Dcore
i (t), such that

‖ξ‖∞ ≤ S − 2R0 tan(eθ
max).

It follows from the definition of Dcore
i (t) that

ξ =

∑
j∈Ni(t)

WLpj(t − τij(t))|Oi(t)

WU + |Ni(t)|WL
∈ Dcore

i (t). (7)

Note that S < R ≤ R0. Thus we have

eθ
max < arctan

1
4

<
π

8
;

and by Lemma 1,

‖ξ‖∞ ≤
|Ni(t)|WLR0

WU + |Ni(t)|WL
=

R0

WU
|Ni(t)|WL

+ 1

≤
R0

WU
NWL

+ 1
≤ S − 2R0 tan(eθ

max),

where the last inequality follows from Condition (C1).
Step 2: In this step, we aim to get the conclusion that for any

k ∈ {1, 2}, if p(k)
j (t − τij(t))|Oi(t) ≥ D, j ∈ Ni(t), then there exists

ξ ∈ Dcore
i (t) such that

2R0 tan(eθ
max) ≤ ξ (k)

≤ S − 2R0 tan(eθ
max);



30 F. Xiao et al. / Automatica 48 (2012) 25–35
and if p(k)
j (t − τij(t))|Oi(t) ≤ −D, j ∈ Ni(t), then there exists ξ ∈

Dcore
i (t) such that

−S + 2R0 tan(eθ
max) ≤ ξ (k)

≤ −2R0 tan(eθ
max).

We only prove the first case, and second case can be proved
similarly.

Suppose that p(k)
j (t −τij(t))|Oi(t) ≥ D. SinceDcore

i (t) is a convex
polytope, by the conclusion of Step 1, it suffices to prove that there
exists some ξ ∈ Dcore

i (t) such that ξ (k)
≥ 2R0 tan(eθ

max). Choose

ξ =
1

WU + |Ni(t)|WL

 −
l∈Ni(t),l≠j

WLpl(t − τil(t))|Oi(t)

+WUpj(t − τij(t))|Oi(t)


∈ Dcore

i (t). (8)

Then it follows from (C1) that

ξ (k)
≥

−(N − 1)R0WL + DWU

WU + NWL
≥ 2R0 tan(eθ

max).

Step 3: Finally, we prove that the solution, satisfying Rules (R1,
R2), exists. Define the following four subcases:

(S1): there exists j, such that p(1)
j (t − τij(t))|Oi(t) ≥ D;

(S2): there exists j, such that p(1)
j (t − τij(t))|Oi(t) ≤ −D;

(S3): there exists j, such that p(2)
j (t − τij(t))|Oi(t) ≥ D;

(S4): there exists j, such that p(2)
j (t − τij(t))|Oi(t) ≤ −D.

Step 3.1: Consider the case when none of the above subcases
holds.

By the result of Step 1, there exists ξ ∈ Dcore
i (t), such that

‖ξ‖∞ ≤ S − 2R0 tan(eθ
max).

Since Dcore
i (t) ⊂ Di(t) and hence ui(t) = ζ is a proper choice.

Step 3.2: Consider the casewhen only one of the above subcases
holds.

We only give the possible choice of ui(t) when only (S1) holds,
but (S2, S3, S4) do not hold; the other cases can be proved similarly.

By the result of Step 2, there exists ξ1 ∈ Dcore
i (t), such that

2R0 tan(eθ
max) ≤ ξ

(1)
1 ≤ S − 2R0 tan(eθ

max). (9)

By the result of Step 1, there exists ξ2 ∈ Dcore
i (t), such that

‖ξ2‖∞ ≤ S − 2R0 tan(eθ
max). (10)

Because Dcore
i (t) ⊂ D rect

i (t, 0) and D rect
i (t, 0) is a rectangle,

ζ =

[
ξ

(1)
1

ξ
(2)
2

]
∈ D rect

i (t, 0).

By Lemma 2, there exists η ∈ Di(t) such that

‖η − ζ‖∞ ≤ 2R0 tan(eθ
max).

It follows from the above inequality and inequalities (9) and (10),
‖η‖∞ ≤ S and η(1)

≥ 0. Choose ui(t) = η, which satisfies Rules
(R1, R2).

Step 3.3: Consider the case then only (S1, S2) hold or when only
(S3, S4) hold.

We only consider the case when only (S1, S2) hold, but (S3, S4)
do not hold; the other case can be proved similarly.

With the same arguments as in Step 3.2, there exist ξ1, ξ2 ∈

Di(t), such that ξ
(1)
1 ≥ 0, ξ (1)

2 ≤ 0, ‖ξ1‖∞ ≤ S, and ‖ξ2‖∞ ≤ S.
Since Di(t) is a convex set, there exists some α such that 0 ≤ α ≤
1, η = αξ1+(1−α)ξ2 with η(1)
= 0. Obviously, ‖η‖∞ ≤ S. Choose

ui(t) = η, which satisfies Rules (R1, R2).
Step 3.4: Consider the casewhen only (S1, S3) hold orwhen only

(S1, S4) hold, or when only (S2, S3) hold or when only (S2, S4) hold.
We only consider the case when only (S1, S3) hold, but (S2, S4)

do not hold; the other cases can be proved similarly.
By the result of Step 2, there exist ξ1, ξ2 ∈ Dcore

i (t), such that
2R0 tan(eθ

max) ≤ ξ
(1)
1 ≤ S − 2R0 tan(eθ

max) and 2R0 tan(eθ
max) ≤

ξ
(2)
2 ≤ S − 2R0 tan(eθ

max). Because D rect
i (t, 0) is a rectangle, we

have

ζ =

[
ξ

(1)
1

ξ
(2)
2

]
∈ D rect

i (t, 0).

By Lemma 2, there exists η ∈ Di(t) such that ‖η − ζ‖∞ ≤

2R0 tan(eθ
max), and thus 0 ≤ η(1)

≤ S, 0 ≤ η(2)
≤ S. Hence

ui(t) = η is a proper choice.
Step 3.5: Consider the casewhen only one of (S1, S2, S3, S4) does

not hold.
We only consider the case when only (S4) does not hold; the

other cases can be proved similarly.
With the same arguments as in Step 3.4, there exists ξ1 ∈ Di(t),

with 0 ≤ ξ
(1)
1 , ξ

(2)
1 ≤ S, and there exists ξ2 ∈ Di(t), with −S ≤

ξ
(1)
2 ≤ 0 and 0 ≤ ξ

(2)
2 ≤ S. Since Di(t) is a convex set, there exists

some α such that 0 ≤ α ≤ 1, η = αξ1 + (1 − α)ξ2 with η(1)
= 0.

Obviously, ‖η‖ ≤ S and η(2)
≥ 0. Hence ui(t) = η is a proper

choice.
Step 3.6: Consider the case when all (S1, S2, S3, S4) hold.
By the result of Step 2, we get that rectangle {ξ : ‖ξ‖∞ ≤

2R0 tan(eθ
max)} ⊂ D rect

i (t, 0). With the same argument as in the
proof of Lemma 2, it can be shown that 0 ∈ Di(t). Then ui(t) = 0
is the proper choice. �

The above proof as well as the proof of Lemma 2 provides us in
fact a feasible distributed numerical algorithm for each agent i for
choosing feedback ui from Di(t), with restrictions (R1, R2), i ∈ In.
The numerical algorithm is a combination of the following three
basic components.

Sub-algorithm 1 (corresponding to Step 1):
Goal: To find ξ ∈ Dcore

i (t) such that ‖ξ‖∞ ≤ S − 2R0 tan(eθ
max).

Feasible solution:

(1) Set ξ :=

∑
j∈Ni(t)

pj(t−τij(t))|Oi(t)

1+|Ni(t)|
;

(2) If ‖ξ‖∞ > S−2R0 tan(eθ
max), set ξ := (S−2R0 tan(eθ

max))
ξ

‖ξ‖∞
.

Sub-algorithm 2 (corresponding to Step 2):
Goal: For any k ∈ {1, 2}, j ∈ Ni(t),

(1) If p(k)
j (t − τij(t))|Oi(t) ≥ D, to find ξ ∈ Dcore

i (t), such that
2R0 tan(eθ

max) ≤ ξ (k)
≤ S − 2R0 tan(eθ

max);
(2) If p(k)

j (t − τij(t))|Oi(t) ≤ −D, to find ξ ∈ Dcore
i (t), such that

−S + 2R0 tan(eθ
max) ≤ ξ (k)

≤ −2R0 tan(eθ
max).

Feasible solution to the first case (similar to the second case):

(1) Set ξ :=

∑
j∈Ni(t)

WLpj(t−τij(t))|Oi(t)

1+|Ni(t)|
;

(2) If ξ (k) < 2R0 tan(eθ
max), set ξ := αξ + (1−α)pj(t − τij(t))|Oi(t),

such that ξ (k)
= 2R0 tan(eθ

max);
(3) Else if ξ (k) > S − 2R0 tan(eθ

max), let ξ ′ be the solution in Sub-
algorithm 1, and set ξ := αξ + (1 − α)ξ ′, such that ξ (k)

=

S − 2R0 tan(eθ
max).

Sub-algorithm 3 (corresponding to Lemma 2):
Goal: Given ξ1, ξ2 ∈ Dcore

i (t), and ζ = [ξ
(1)
1 , ξ

(2)
2 ], to find η ∈

Di(t) such that ‖η − ζ‖∞ ≤ 2R0 tan(eθ
max).
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Feasible solution:

(1) If ‖ξ1 − ζ‖∞ ≤ 2R0 tan(eθ
max(t)) or ‖ξ2 − ζ‖∞ ≤

2R0 tan(eθ
max(t)), then η := ξ1 or η := ξ2 is the feasible choice;

(2) Else let α =
|ξ

(1)
1 −ξ

(1)
2 |−tan(eθmax(t))|ξ

(2)
1 −ξ

(2)
2 |

1−tan2(eθmax(t))
and let β =

|ξ
(2)
1 −ξ

(2)
2 |−tan(eθmax(t))|ξ

(1)
1 −ξ

(1)
2 |

1−tan2(eθmax(t))
; and set η(1)

:= ξ
(1)
2 +

α

|ξ
(1)
1 −ξ

(1)
2 |

× (ξ
(1)
1 − ξ

(1)
2 ) and η(2)

:= ξ
(2)
1 +

β

|ξ
(2)
2 −ξ

(2)
1 |

(ξ
(2)
2 − ξ

(2)
1 ).

Note that parameters WL and WU do not appear in the above
three sub-algorithms. However, from the fact that ξ in Step 1,
determined by Eq. (7), is a convex combination of agent i and the
centroid of agent i and its registered neighbors, and ξ in Step 2,
determined by Eq. (8), is a convex combination of agent j and the
centroid,wehave that if compatible condition (C1) is satisfied, then
the above three sub-algorithms are surely solvable. Simulations
based on these sub-algorithms will be provided in Section 6.

5.3. Effectiveness in connectivity preservation

This subsection studies the effectiveness of the proposed
protocol in the presence of two kinds of alignment errors of
coordinate orientations. The first is maximum static error eθ

max
for the case with time-invariant local coordinate orientations; the
second is maximum sum error eθ

Σ , defined by

eθ
Σ = sup


lim
l→∞

l−
t=0

|θi(t)|, i ∈ In


,

for the case with time-varying local coordinate orientations.

Theorem 3 (Connectivity Preservation). Assume that eθ
max <

arctan

min


D

2R0
, S

4R0


; for the case with time-invariant local

coordinate orientations, assume that

D0
+ (T + 1)S0 + 2dmax tan(eθ

max) ≤

√
2R
2

,

where D0
=

D
cos(eθmax)

+(R+TS0) tan(eθ
max), S

0
=

√
2S cos(π

4 −eθ
max),

and dmax = maxi,j,k{|p
(k)
i (0) − p(k)

j (0)|}; and for the case with time-
varying local coordinate orientations, assume that

D0
+ (T + 1)S0 + 2Seθ

Σ ≤

√
2R
2

. (11)

Then if the system evolves under Rules (R1, R2), and {(vi, vj), (vj, vi)}
⊂ E(G(t0)) for some time t0, then {(vi, vj), (vj, vi)} ⊂ E(G(t)) for
all t ≥ t0. Thus, under the above conditions as well as the compatible
Condition (C1), protocol (3) under Rules (R1, R2) will drive all agents
to reach a common place asymptotically, as long as the registered
interaction topology G(t) is connected for some time t.

Remarks.

(1) If eθ
max = 0, i.e., all local coordinate orientations have been

already aligned with each other, then the above two inequal-
ities are reduced to D + (T + 1)S ≤

√
2R
2 , which is the least

requirement for S, as described in (R1).
(2) If the alignment algorithm for local coordinate orientations

is performed in parallel with the rendezvous control, and
θi(t), i ∈ In, converge asymptotically to zero at a vanishing
speed µ, 0 < µ < 1, i.e., |θi(t)| ≤ µt

|θi(0)|, then we can get
an estimation that liml→∞

∑l
t=0 |θi(t)| ≤

1
1−µ

|θi(0)|.
(3) By Eq. (4), if the maximum distance between agents is not

larger than R, then the network connectivity cannot be broken
any more and thus the connectivity-preserving restrictions
(R1, R2, C1) can be relaxed in this case.

(4) It should be emphasized that the connectivity of registered in-
teraction topology G(t) does not means that the information
channels between mutually registered neighbors are bidirec-
tional and exist all time; and it only means that the distances
between them do never exceed theminimum sensing radius R.

We first list the following facts about the system under Rules
(R1, R2) before proving the above theorem.

In the global coordinate system, the maximum step length,
described by Rule (R1), is estimated by the following lemma.

Lemma 3. For any i and t, if ‖ui(t)‖∞ ≤ S and eθ
max < π

4 , then

‖pi(t + 1) − pi(t)‖∞ ≤ S0.

Proof. It follows from Eq. (2) that

‖pi(t + 1) − pi(t)‖∞ ≤ S

| cos(θi(t))| + | sin(θi(t))|


=

√
2S cos

π

4
− |θi(t)|


≤

√
2S cos

π

4
− eθ

max


= S0. �

Lemma 4. For any ξ ∈ R2, k ∈ {1, 2}, and |θ | ≤ eθ
max < π

4 , if
‖ξ‖∞ ≤ R + TS0, then ξ (k)

≥ D0 implies that (Θ(θ)ξ)(k) ≥ D, and
ξ (k)

≤ −D0 implies that (Θ(θ)ξ)(k) ≤ −D.

Proof. If ξ (1)
≥ D0, then

(Θ(θ)ξ)(1) = cos(θ)ξ (1)
− sin(θ)ξ (2)

≥ cos(θ)


D

cos(eθ
max)

+ (R + TS0) tan(eθ
max)


− sin(θ)ξ (2)

≥ D + (R + TS0) sin(eθ
max) − sin(θ)ξ (2)

≥ D,

where the last inequality follows from that ‖ξ‖∞ ≤ R + TS0.
With the same arguments, we can prove the other cases. �

Lemma 5. Suppose that ‖ui(t)‖∞ ≤ S, and |θi(t)| < π
4 , i ∈ In.

For any k, if u(k)
i (t) ≤ 0, then (Θ(θi(t))ui(t))(k) ≤ S| sin(θi(t))|; if

u(k)
i (t) ≥ 0, then (Θ(θi(t))ui(t))(k) ≥ −S| sin(θi(t))|.

Proof. If k = 1 and u(1)
i (t) ≤ 0, then

(Θ(θi(t))ui(t))(1) = cos(θi(t))ui(t)(1) − sin(θi(t))ui(t)(2)

≤ − sin(θi(t))ui(t)(2) ≤ S| sin(θi(t))|.

The other cases can be proved similarly. �

Proof of Theorem 3. Since {(vi, vj), (vj, vi)} ⊂ E(G(t0)), by the
definition of registered neighbors and their renewal strategy, there
exist a time t−0 , t−0 ≤ t0, and k ∈ {i, j}, such that {(vi, vj), (vj, vi)} ⊂

E(G(t−0 )), and ‖pi(t−0 )|Ok(t
−

0 ) −pj(t−0 )|Ok(t
−

0 )‖∞ ≤ D, which implies

that ‖pi(t−0 ) − pj(t−0 )‖∞ ≤
√
2D cos


π
4 − eθ

max


< D0. Further-

more, by the fact that D0
+ (T + 1)S0 ≤

√
2
2 R and Lemma 3, we can

get that {(vi, vj), (vj, vi)} ⊂ E(G(t)), t−0 ≤ t ≤ t−0 + T + 1. Next,
we assume that t0 = t−0 without loss of generality; and prove this
theorem by contradiction.

We first give the follow assumption and then show that it will
lead to a contradiction:

(AC): Assume that there exists a time t1 such that ‖pi(t) −

pj(t)‖2 ≤ R for all t0 ≤ t ≤ t1 and ‖pj(t1 + 1) − pi(t1 + 1)‖2
> R.
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Obvious, t1 ≥ t0 + T + 1, and by the assumption of link failure
and recovery, Assumption (AC) implies that {(vi, vj), (vj, vi)} ⊂

E(G(t)), t0 ≤ t ≤ t1 and if the above assumption is false, then
{(vi, vj), (vj, vi)} ⊂ E(G(t)) for all t ≥ t0.

Without loss of generality, suppose that p(1)
j (t1 + 1) − p(1)

i (t1 +

1) >
√
2R
2 . Since ‖pi(t0) − pj(t0)‖∞ < D0, there exists a time t ′0,

t0 < t ′0 ≤ t1, such that

D0
+ TS0 ≤ p(1)

j (t ′0) − p(1)
i (t ′0) < D0

+ (T + 1)S0,

and

p(1)
j (t) − p(1)

i (t) ≥ D0
+ (T + 1)S0, t = t ′0 + 1, . . . , t1 + 1.

By Lemma 3, the maximum step length along each global
coordinate axis is not larger than S0, and thus the above
inequalities imply that for t = t ′0, . . . , t1, p

(1)
j (t−τij(t))−p(1)

i (t) ≥

D0 and p(1)
i (t − τji(t)) − p(1)

j (t) ≤ −D0. It follows from Lemma 4
and Rule (R2) that
u(1)
i (t) ≥ 0

u(1)
j (t) ≤ 0,

t = t ′0, . . . , t1. (12)

Case 1: Consider the case when the coordinate orientation of
each agent is fixed. For simplicity, we drop the time parameter in
the expression θi(t).

The above inequality (12) implies that the two agents are
located between the two lines for t = t ′0, t

′

0 + 1, . . . , t1 + 1,
Line 1: ξ(s) = pi(t ′0) − s sin(θi)x + s cos(θi)y, s ∈ (+∞, ∞)
Line 2: ξ(s) = pj(t ′0) − s sin(θj)x + s cos(θj)y, s ∈ (+∞, ∞),

where x, y are the unit vectors codirectional with the global
horizontal and vertical axes respectively.

On the other hand, by Eq. (4), there exists a square region with
side length dmax and themovement of all agents is restricted to this
region all the time. Therefore, p(1)

j (t)− p(1)
i (t) < D0

+ (T + 1)S0 +

2dmax tan(eθ
max) ≤

√
2R
2 for all t, t ′0 ≤ t ≤ t1 + 1, which contradicts

Assumption (AC).
Case 2: Consider the case when the coordinate orientation of

each agent is time-varying. By Lemma 5,
(Θ(θi(t))ui(t))(1) ≥ −S| sin(θi(t))|
(Θ(θj(t))uj(t))(1) ≤ S| sin(θj(t))|,

t = t ′0, t
′

0 + 1, . . . , t1 + 1.

Therefore, by inequality (11),

p(1)
j (t1 + 1) − p(1)

i (t1 + 1)

< D0
+ (T + 1)S0 + S

t1−
l=t ′0

| sin(θi(l))| + S
t1−

l=t ′0

| sin(θj(l))|

< D0
+ (T + 1)S0 + S

t1−
l=t ′0

|θi(l)| + S
t1−

l=t ′0

|θj(l)|

≤

√
2R
2

,

which contradicts Assumption (AC). �

5.4. Robustness against measurement errors

This subsection will show the robustness of protocol (3) against
measurement errors. Let p̂j(t)|Oi(t) denote the measured relative
position of agent j, with a measurement error, obtained by agent i
at time t; and assume that these measurement errors are bounded
by epmax, that is, ‖p̂j(t)|Oi(t) − pj(t)|Oi(t)‖2 ≤ epmax. In this case,
we revise the definition of ‘‘registered neighbors’’ and the renewal
strategy of ‘‘registered neighbor’’ role with p̂j(t)|Oi(t) in place of
pj(t)|Oi(t) and with R + epmax in the place of R, and revise the def-
initions of D rect

i (t, ·) and Di(t) with p̂j(t − τij(t))|Oi(·) in place of
pj(t − τij(t))|Oi(·). Furthermore, we restate the link recovery as-
sumption by that if ‖pj(k) − pi(k)‖2 ≤ R for all k, t ≤ k ≤

t + T , then agent i should obtain the relative position of agent
j, p̂j(t)|Oi(t), with ‖p̂j(t ′)|Oi(t ′)‖2 ≤ R + epmax, at some time t ′, t ≤ t ′
≤ t + T . Consequently, we can further assume that ‖p̂j(t −

τij(t))|Oi(t−τij(t))‖2 ≤ R + epmax for any t . Under the above assump-
tions, the evolution equation of the studied system can be written
as

p(k)
i (t) =

1∑
j∈Ni(t)∪{i}

αk
ij(t)

×

 −
j∈Ni(t)

αk
ij(t)p̂

(k)
j (t − τij(t)) + αk

ii(t)p
(k)
i (t)


,

i ∈ In, k ∈ {1, 2}, (13)

where WL ≤ αk
ij(t) ≤ WU .

As for Eq. (13), we have the following convergence result.

Theorem 4. Consider Eq. (13) with ‖p̂j(t − τij(t))|Oi(t) − pj(t −

τij(t))|Oi(t)‖2 ≤ epmax. If registered interaction topology G(t) always
contains a spanning tree, then there exists 0 < λ∗ < 1 such that for
any k ∈ {1, 2}, V (t) = maxi p

(k)
i (t) − mini p

(k)
i (t) will converge to

a value not greater than

1 + n(T + 1)(2(n+1)2T2

+ 1)
 1
1−λ∗


epmax

in the sense of limit superior as time goes on.

Proof. See the Appendix. �

Remarks.
(1) Theorem 4 just gives a theoretical estimation of the upper

bound on the final inter-agent distances; and in practice, the
upper bound may not be that large.

(2) A more general result can be derived if the assumption about
the registered interaction topology G(t) is relaxed to that the
union of the registered interaction graph contains a spanning
tree periodically.

To show the effectiveness of connectivity preservation,we need
to ensure that Rules (R1, R2) can be guaranteed in the evolution
of the system. Note that each agent uses the value of p̂(k)

j (t −

τij(t))|Oi(t) but not p
(k)
j (t − τij(t))|Oi(t) in the computation of Di(t)

and that p(k)
j (t − τij(t))|Oi(t) ≥ D implies that p̂(k)

j (t − τij(t))|Oi(t)

≥ D − epmax and p(k)
j (t − τij(t))|Oi(t) ≤ −D implies that p̂(k)

j (t −

τij(t))|Oi(t) ≤ −(D − epmax). So it is more convenient to change
registering radius D to D − epmax (epmax < D), and use Rule (R2′)
instead of (R2) in the selection of ui(t):

(R2′): for any i ∈ In, t ∈ N, j ∈ Ni(t), and any k ∈ {1, 2}, if
p̂(k)
j (t − τij(t))|Oi(t) ≥ D − epmax, then u(k)

i (t) ≥ 0, and if
p̂(k)
j (t − τij(t))|Oi(t) ≤ −(D − epmax), then u(k)

i (t) ≤ 0, where
epmax should be smaller than D.

As corollaries of Theorems 2 and 3, we present the following
compatible conditions and connectivity preservation result for the
case with measurement errors.

Corollary 1 (Compatibility). Assume that for t ′ < t, the control law
ui(t ′) is chosen according to Rule (R1); i.e.,

ui(t ′)


∞
≤ S, t ′ < t; as-

sume that themaximummeasurement error epmax < D; themaximum
axis alignment error eθ

max < arctan

min


D−epmax

2(R0+epmax)
, S

4(R0+epmax)


;

and parameters WU and WL meet the following condition:
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(C2):

WU

WL
≥ max


N


R0
+ epmax

S − 2(R0 + epmax) tan(eθ
max)

− 1


,

(N − 1)(R0
+ epmax) + 2(R0

+ epmax)N tan(eθ
max)

D − epmax − 2(R0 + epmax) tan(eθ
max)


.

Then there exists ui(t) ∈ Di(t), satisfying Rules (R1, R2′) and thus
satisfying Rule (R2).

Corollary 2 (Connectivity Preservation). Assume that the maximum
measurement error epmax < D; the maximum axis alignment error

eθ
max < arctan


min


D − epmax

2(R0 + epmax)
,

S
4(R0 + epmax)


;

and Eq. (11) holds. Then if the system evolves under Rules (R1, R2′),
and {(vi, vj), (vj, vi)} ⊂ E(G(t0)) for some time t0, then {(vi, vj),
(vj, vi)} ⊂ E(G(t)) for all t ≥ t0.

Remarks.
(1) Corollary 2 does not give sufficient conditions for the casewith

time-invariant local coordinate orientations. This is mainly
because the moving region of agents may be unbounded in
some extreme cases with measurement errors. The related
topics are currently under investigation.

(2) The maximum measurement error epmax is bounded by D.
However, if epmax is sufficiently close to D, then the registering
radius D − epmax will become very small, and in this case, if
the initially registered interaction topology G(0) is connected,
then we can guess that all agents are gathered in a small
space and thus connectivity-preserving Rules (R1, R2′) can be
dropped. Therefore, there is a tradeoff between the maximum
measurement error epmax and the effective range of Rules
(R1, R2′).

(3) It also can be observed that the larger the maximum
measurement error epmax is, the larger WU

WL
is required to be.

6. Simulations

This section presents simulation results for a group of agents
withminimum sensing radius R = 20. To show the effectiveness of
the proposed protocol, we consider the case thatmost of the agents
are gathered randomly in the four corners of a rectangle region and
the rest of themare sparsely distributed, and assume that the initial
position measurements are all successful and all initially possible
neighbors are registered.

Fig. 4 shows the trajectories of agents under protocol (3) with
Rules (R1, R2), where T = 2, S = 1; D = 10, eθ

max = 0.007,
and axis alignment errors are uniformly distributed between
[−eθ

max, e
θ
max] and time-invariant. Fig. 5 shows the evolution of

the maximum distance between initially mutually registered
neighbors. For comparison, Figs. 6 and 7 show the trajectories of
agents and the evolution of the same variable as in Fig. 5 under
the consensus protocol with equal weighting factors (see Ren &
Beard, 2005) and under the assumption that T = 0. It is clear that
the connectivity can be preserved under our proposed protocol,
but the convergence is slowed down due to the restriction on the
maximum step length.

For the case with time-varying local coordinate orientations,
assume that each θi(t) converges asymptotically to zero at a
vanishing speed µ = 0.8, eθ

max = 0.01, epmax = 1, and T = 1;
and choose D = 11. Figs. 8 and 9 show the trajectories of agents
and the evolution of the maximum distance between initially
registered neighboring agents under protocol (3) with Rules (R1,
R2′) respectively.
Fig. 4. Trajectories of agents with time-invariant local coordinate orientations
under protocol (3) with Rules (R1, R2).

Fig. 5. Evolution of the maximum distance between initially mutually registered
neighborswith time-invariant local coordinate orientations under protocol (3)with
Rules (R1, R2).

Fig. 6. Trajectories of agents under the consensus protocol with equal weighting
factors.

Fig. 7. Evolution of the same variable as in Fig. 5 under the consensus protocol with
equal weighting factors.

7. Conclusion

This paper proposed a newprotocol formulti-agent rendezvous
and connectivity preservation with directed interaction and time
delayed information. We showed its effectiveness and robustness
by rigorous mathematical arguments. However, the proposed
algorithm is a generalized convex combination algorithm with
connectivity-preserving restrictions, and these restrictions may
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Fig. 8. Trajectories of agents with time-varying local coordinate orientations and
measurement errors under protocol (3) with Rules (R1, R2).

Fig. 9. Evolution of the maximum distance between initially mutually registered
neighborswith time-varying local coordinate orientations andmeasurement errors
under protocol (3) with Rules (R1, R2′).

negatively affect the performance of the system. Therefore,
how to remove these restrictions and improve the convergence
performance is a future research topic. Future work also includes
formation control with connectivity preservation by similar ideas
as employed in this paper.

Appendix

This Appendix will give the proof of Theorem 4. To reach
this end, we first present some preliminary notion and results in
nonnegative matrix theory (Wolfowitz, 1963).

A stochastic matrix A is called indecomposable and aperiodic
(SIA) (or ergodic) if there exists a column vector ν such that
limk→∞ Ak

= 1νT , where 1 = [1, 1, . . . , 1]T with compatible
dimensions. Let A = [aij] be any stochastic matrix and let δ(A) =

maxj maxi1,i2 |ai1j − ai2j|. Thus δ(A) measures how different the
rows of A are. If the rows of A are identical, δ(A) = 0, and vice versa.
Define λ(A) = 1 − mini1,i2

∑
j min(ai1,j, ai2,j), where A is stochas-

tic. If λ(A) < 1, A is called a scramblingmatrix. Let
∏l

i=1 Ai = AlAl−1
· · · A1, denoting the left product of matrices.

Lemma 6 (Hajnal, 1958, Theorem 2). For any stochastic matrices
A1, A2, . . . , Al,

δ


l∏

i=1

Ai


≤

l∏
i=1

λ(Ai).

Proof of Theorem 4. Denote q0(t) = [p(k)
1 (t), p(k)

2 (t), . . . , p(k)
n (t)]T

and denote q(t) = [q0(t)T , q0(t − 1)T , q0(t − T )T ]T . Then Eq. (13)
can be equivalently represented in the following matrix form:

q(t + 1) = Ξ(t)q(t) + 1q(t), t ≥ T , (14)

where Ξ(t) is stochastic and ‖1q(t)‖∞ < epmax. Let X denote the
closure of the set consisting of all possible state matrices Ξ(t).
Then by Lemma 5 in Xiao and Wang (2008), it can be shown that
for any A1, A2, . . . , Al ∈ X (repetitions permitted),
∏l

i=1 Ai is an
SIAmatrix, and if l > 2n2(T+1)2 , then

∏l
i=1 Ai is a scramblingmatrix,

see Xiao and Wang (2008) for detailed discussions. For notational
simplicity, letm = 2n2(T+1)2

+ 1. Define

λ∗
= sup

Ai∈X
λ


m∏
i=1

Ai


.

It follows from the compactness of X that 0 < λ∗ < 1. For any t ,
let
 t

m


denote the maximum integer not greater than t

m and let t
m

+
= t −

 t
m


m. Then 0 ≤

 t
m

+
< m, and

t =


t
m


m +


t
m

+

.

To study the convergence property of difference Eq. (14), we
introduce the following Lyapunov-like function:

V ′(q(t)) = max
i∈In,0≤t ′≤T

p(k)
i (t − t ′) − min

i∈In,0≤t ′≤T
p(k)
i (t − t ′).

Clearly,

V ′(q(t)) ≤ 2‖q(t)‖∞.

Moreover, it can be shown that for any stochastic matrix A in
Rn(T+1)×n(T+1),

V ′(Aq(t)) ≤ n(T + 1)δ(A)‖q(t)‖∞, (15)

and

‖Aq(t)‖∞ ≤ ‖q(t)‖∞. (16)

By Eq. (14), we get that

q(t + T + 1) = Ξ(t + T )Ξ(t + T − 1) · · · Ξ(T )q(T )

+ Ξ(t + T )Ξ(t + T − 1) · · · Ξ(T + 1)1q(T )

+ · · · + Ξ(t + T )1q(t + T − 1) + 1q(t + T ).

With respect to the first item on the right side of the above
equation, we have

V ′


t∏

i=0

Ξ(T + i)q(T )


≤ n(T + 1)δ

 t∏
i=( t

m )
+

+1

Ξ(T + i)



×


( t
m )

+∏
i=0

Ξ(T + i)q(T )


∞

≤ n(T + 1)(λ∗)⌊
t
m⌋‖q(T )‖∞,

where the first inequality follows from inequality (15) and the last
inequality follows from Lemma 6 and inequality (16). With the
same arguments, it can be shown that for any t ′ with 1 ≤ t ′ ≤ t ,

V ′


t∏

i=t ′
Ξ(T + i)1q(T + t ′ − 1)


≤ n(T + 1)(λ∗)


t−t′
m


epmax.

Therefore,

V ′(q(t + T + 1)) ≤ n(T + 1)(λ∗)⌊
t
m⌋‖q(T )‖∞

+


1 + n(T + 1)m


1 + λ∗

+ (λ∗)2 + · · ·

+ (λ∗)


t−1
m


epmax.
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Since 0 ≤ λ∗ < 1,

lim sup
t→∞

V ′(q(T + t + 1)) ≤


1 + n(T + 1)m


1

1 − λ∗


epmax,

which implies that

lim sup
t→∞

V (t) ≤


1 + n(T + 1)m


1

1 − λ∗


epmax. �
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