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The dynamic weapon-target assignment (DWTA) problem is an i mportant issue in the field of military
command and control. An asset-based DWTA optimization mode l was proposed with four kinds of con-
straints considered, including capability constraints, s trategy constraints, resource constraints and
engagement feasibility constraints. A general “virtual” r epresentation of decisions was presented to
facilitate the generation of feasible decisions. The repre sentation is in essence the permutation of all
assignment pairs. A construction procedure converts the pe rmutations into real feasible decisions.
In order to solve this problem, three evolutionary decision -making algorithms, including a genetic al-
gorithm and two memetic algorithms, were developed. Experi mental results show that the memetic
algorithm based on greedy local search can generate obvious ly better DWTA decisions, especially for
large-scale problems, than the genetic algorithm and the me metic algorithm based on steepest local
search.
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1 Introduction

The dynamic weapon-target assignment (DWTA)

problem is a typical constrained combinatorial op-

timization problem arising in the field of military

operations research. Its objective is to minimize

the expected damage of own-force assets by as-

signing available weapons to offensive targets at

appropriate occasions. In fact, the weapon-target

assignment (WTA) problem is one of the crucial

issues for the automation of military command

and control (C2) which is regarded as a challenge

to control science[1]. WTA has been proved to

be NP-Complete[2]. It has two versions — static

WTA (SWTA) and dynamic WTA (DWTA)[3,4].

In SWTA, all weapons engage targets in a single

stage, and all of the parameters for the problem

are known. Thus, the goal of SWTA is to find

the optimal assignment for a temporary defense

task. In contrast, DWTA is a multi-stage problem

and the outcome of each engagement is assessed

for subsequent decisions. The goal of DWTA is to

find a global optimal assignment for the whole de-

fense process in which the engagement occasion of

weapons must be taken into account. Intuitively,

DWTA can be achieved by a series of SWTAs
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through all stages. However, although SWTA can

at best guarantee the optimality of the WTA deci-

sions for its corresponding defense stage, the com-

bination of all SWTA decisions may not be optimal

for the whole defense process. Besides, the actual

issue of time windows which limit the engagement

of weapons is not involved in SWTA[3]. In addition

to the engagement constraints, the complexity of

DWTA problems is also caused by resource con-

straints and strategy constraints[5,6].

Previous researches on WTA mainly focus on

SWTA[6−20]. In respect of SWTA models, Ho-

sein and Athans[3] proposed an asset-based SWTA

model which was also used in refs. [7, 8].

Karasakal[9] used the probability of shooting down

all incoming targets as the objective function of

the air defense WTA model for a naval task

group. Some scholars adopted target-based SWTA

models which do not employ the value of assets

directly[10−19]. Instead, each target in this case is

assumed to have certain value of threat, and the

objective is to minimize the total threat of all tar-

gets. In fact, the probability model in ref. [9] and

the target-based models are just special cases of the

asset-based model in ref. [3]. Besides, the cost of

weapons is also taken into account in some models

like that in ref. [20]. A more complicated model

which considers the function of special assets can

be found in ref. [21].

Based on the above models, varied algorithms

have been proposed to solve SWTA since the

middle of the last century. In the early stages,

the algorithms for SWTA were limited to tradi-

tional algorithms such as implicit enumeration al-

gorithms, branch-and-bound algorithms and dy-

namic programming[6]. With the development

of computer technology, some novel algorithms

such as neural networks[10], genetic algorithms

(GAs)[7,11,12], taboo search (TS)[13], simulated an-

nealing algorithms (SA)[14], ant colony optimiza-

tion (ACO)[15], and particle swarm optimization

(PSO)[16], have been developed. Some scholars also

tried hybrid algorithms[8,17,18]. For example, Lee

et al.[17] designed a memetic algorithm which com-

bines the advantages of global search (genetic algo-

rithm) and local search (greedy eugenics) to solve

target-based SWTA problems. Besides, Ahuja et

al.[19] developed several branch-and-bound algo-

rithms and a very large scale neighborhood search

algorithm to solve target-based SWTA problems.

Although nearly two decades have passed since

DWTA was put forward[4], there are in contrast to

SWTA only a few researches on DWTA[5,6,21−24].

Cai et al.[6] introduced some basic concepts on

DWTA and provided a systematic survey on WTA

problem. Hosein and Athans[4] did an early re-

search on a two-stage asset-based DWTA problem

and proposed a suboptimal algorithm for finding a

good solution. Hosein et al.[21,22] also made some

typical empirical experiments and provided ana-

lytical solutions to several simple cases of DWTA.

Khosla[23] used a hybrid genetic algorithm which

incorporates a simulated annealing-type heuristic

to solve a target-based DWTA problem. In partic-

ular, a weighted combination of threat value and

option weight is employed in the objective function

of this DWTA model. Havens[24] models DWTA by

means of simulation; however, it is in fact the rep-

etition of SWTA[5]. Li et al.[5] proposed a target-

based DWTA model with the objective of mini-

mizing the total threat of the targets which sur-

vive the final stage of air defense operation. As

far as we know, no algorithm has been proposed

in the literature to solve asset-based DWTA prob-

lems with complicated constraints caused by the

issue of engagement feasibility (e.g., the limit of

time windows). The goal of this paper is to de-

velop evolutionary decision-making algorithms to

solve asset-based DWTA problems incorporating

engagement feasibility.

The remainder is organized as follows. In section

2, the mathematical model for asset-based DWTA

problem is formulated. A general “virtual” rep-

resentation of solutions (decisions) is proposed to

facilitate the generation of feasible solutions, and a

constructive procedure transforms the virtual rep-

resentation into a feasible solution. In section 3,

a genetic algorithm and two memetic algorithms

(MAs) for DWTA that are hybrid of genetic al-

gorithms (GAs) and local improvement techniques

are proposed. The results of employing different

algorithms to solve DWTA problems are presented
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and analyzed in section 4. Finally, section 5 con-

cludes the paper.

2 Problem formulation

DWTA models depend on many factors such as de-

fense strategies, features of targets and weapons

and actual combat situations. Different defense

scenarios may require different models. The sce-

nario considered in this paper is narrated as fol-

lows. At certain time, the defender detects T offen-

sive targets with their attack aims exposed, and K

assets of the defender are threatened. There are W

weapons available to intercept the targets. Before

these targets break through the defense, there are

at most S stages in which the defender’s weapons

can be assigned to certain targets. The value of S

depends on the distance between targets and their

aims, target’s flight speed, weapon’s regulation &

launch & flight time, the delay of data analysis

and decision-making, and so on[9]. A general en-

gagement policy “Shoot-Look-Shoot (SLS)” is as-

sumed which is a tradeoff between defense effect

and defense cost[4,9,21−23].

2.1 Objective function

The total expected value of surviving assets after

the final stage is taken as the objective of WTA

for the current stage. This objective is somewhat

similar to that in ref. [5] which also considers the

optimization of the whole defense effect. The for-

mulation of the objective function for stage t is

shown as follows:

Jt(X
t)

=

K(t)
∑

k=1

vk

T (t)
∏

j=1

[

1 − qjk

S
∏

h=t

W (t)
∏

i=1

(1 − pij(h))xij (h)

]

with t ∈ {1, 2, . . . , S}, (1)

where W (t), T (t) and K(t) are, respectively, the

total numbers of the remaining weapons, targets

and assets in stage t; h is, like t, also an in-

dex of stage; X
t=[Xt,Xt+1, . . . ,XS ] with Xt =

[xij(t)]W×T is the decision variable in stage t, and

xij(t) = 1 if weapon i is assigned to target j in stage

t, xij(t) = 0 otherwise; vk is the value of asset k;

qjk is the probability that target j destroys asset

k; pij(t) is the probability that weapon i destroys

target j in stage t.

2.2 Constraints

The following four categories of constraints are in-

cluded in our DWTA model.
T

∑

j=1

xij(t) 6 ni,∀t ∈ {1, 2, . . . , S},

∀i ∈ {1, 2, . . . ,W}, (2)

W
∑

i=1

xij(t) 6 mj,∀t ∈ {1, 2, . . . , S},

∀j ∈ {1, 2, . . . , T}, (3)

S
∑

t=1

T
∑

j=1

xij(t) 6 Ni,∀i ∈ {1, 2, . . . ,W}, (4)

xij(t) 6 fij(t), ∀t ∈ {1, 2, . . . , S},

∀i ∈ {1, 2, . . . ,W}, ∀j ∈ {1, 2, . . . , T}. (5)

The constraint set (2) reflects the capability of

weapons in firing at multiple targets at the same

time. Most of actual weapons can shoot only one

target at a time. Besides, a special weapon that

can engage multiple targets simultaneously can be

viewed as multiple separate weapons. In view of

these facts, we set ni = 1 for ∀i ∈ {1, 2, . . . ,W}.

The constraint set (3) limits the weapon cost for

each target in each stage. The setting of mj(j =

1, 2, . . . , T ) usually depends on the combat per-

formance of available weapons. In our research,

we suppose that mj = 1 for ∀j ∈ {1, 2, . . . , T}.

This is a reasonable setting for missile-based de-

fense systems and the “Shoot-Look-Shoot” engage-

ment policy[5,9]. For artillery-based defense sys-

tems, the value of mj(j = 1, 2, . . . , T ) may be

greatly increased under the same demand on de-

fense strength. So the constraints in (3) can be

considered as strategy constraints. The constraint

set (4) reflects in essence the amount of ammuni-

tion equipped for weapons. Ni(i = 1, 2, . . . ,W ) is

the maximal number of times that weapon i can be

used due to the limit of its equipped ammunition.

In the constraint set (5), fij(t) is the indication of

actual engagement feasibility for weapon i assigned

to target j in stage t. fij(t) = 0 if weapon i cannot

shoot target j in stage t with any potential reason;

fij(t) = 1 otherwise. The time windows of targets
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and weapons are the primary factors that affect en-

gagement feasibility[5,6]. Constraint set (5) is very

important to actual dynamic WTA problems since

it contains the influence of time windows on the

engagement feasibility of weapons. Besides, it also

increases the complexity of DWTA problems and

the difficulty of generating feasible solutions. In

this case, it is hard to design a desirable operator

which can generate new solutions and guarantee

their feasibility at the same time.

2.3 Optimization model for DWTA

The optimization model for the dynamic WTA

problem mentioned above is shown as follows:

Maximize Jt(X
t)

s.t. (2), (3), (4) and (5),

with t ∈ {1, 2, . . . , S}. (6)

It is clear that the DWTA problem is a con-

strained combinatorial optimization problem. In

the research field of mathematical programming, it

can also be categorized as a 0-1 programming prob-

lem. The dynamic characteristic of this model is

mainly reflected by the stochastic nature of damage

in each stage, the choice of engagement stages and

the change of engagement feasibility. In contrast to

target-based DWTA models[5,23], this asset-based

model stresses on the protection of own-force as-

sets especially those important assets, the ultimate

goal and essence of WTA, as shown by its objec-

tive. Besides, the threats of all targets are directly

contained in this model while target-based models

depend on the evaluation of the threats of targets.

Note that we only consider the DWTA decision-

making scenario corresponding to t = 1 for the

comparison of different algorithms in this paper. In

fact, decision-making will become relatively easier

as t increases due to the destruction of targets and

the consumption of weapons. There are no sub-

stantial differences between the DWTA decision-

making scenarios corresponding to different stages.

2.4 Virtual representation and generation

of feasible decisions

The variable X
t is a direct representation of

DWTA decisions. However, it contains many im-

mutable components restricted by the constraint

set (5). In order to avoid violating the con-

straints in (5), we propose a virtual representa-

tion of DWTA decisions. The virtual representa-

tion is the permutation of all available assignment

pairs. The definition of available assignment pairs

is shown as follows.

Definition 1. Available assignment pair (AAP)

If weapon i can be used to engage target j in

stage t, then the assignment pair i − j − t is an

AAP. The pair i − j − t is an APP iff fij(t) = 1.

Denote by SAAP the set of all AAPs. It is easy

to see that the engagement feasibility matrices

F
t = [fij(t)]W×T (t = 1, 2, . . . , S) determine SAAP.

So, F
t(t = 1, 2, . . . , S) are utilized to get SAAP.

The following is an illustration for virtual repre-

sentation.

Given

F
1 =







1 0

1 0

0 1






, F

2 =







0 1

0 1

1 0







and

F
3 =







0 0

1 0

0 0






,

all AAPs with their indexes are shown as follows:

(1) i1 − j1 − t1; (2) i2 − j1 − t1; (3) i3 − j2 − t1;

(4) i1 − j2 − t2; (5) i2 − j2 − t2; (6) i3 − j1 − t2;

(7) i2 − j1 − t3.

3-2-7-4-1-5-6, for instance, is a permutation of

the seven AAPs that is a virtual representation of

certain DWTA decision. In fact, the permutation-

based representation is common for the quadratic

assignment problem (QAP) which is a classical NP-

hard combinatorial optimization problem[25]. How-

ever, the permutation employed for QAP is a di-

rect representation of solutions which indicates the

correspondence between facilities and locations. In

contrast, the permutation for DWTA does not pro-

duce feasible decisions directly since it cannot guar-

antee the satisfaction of the constraints in (2), (3)

and (4). In fact, the foundation on which we em-

ploy the virtual representation is that the genera-

tion of DWTA decisions depends on the assignment

order of all AAPs. Besides, it is convenient to pro-

duce feasible decisions with such a representation
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followed by a subsequent construction procedure.

In this procedure, we present the concept of con-

straint saturation to deal with the constraints in

(2), (3) and (4). Note that a constraint c(X) 6 0

is said to be saturated iff a decision X results in

c(X) = 0.

Initially, the states of all constraints in (2),

(3) and (4) are unsaturated. In the constructive

process, the states will be updated dynamically.

The pseudocode for the construction procedure is

shown in Table 1.

Since only AAPs are considered for the construc-

tion procedure, the constraints in (5) will not be vi-

olated. Thus, the generation of feasible decisions in

the above procedure concentrates on the constraint

satisfaction of (2), (3) and (4). It is evident that

no violation of constraints will occur due to the

mechanism of constraint saturation. Besides, each

permutation can be used to produce only one feasi-

ble decision because the construction procedure is

deterministic. All feasible decisions can be gener-

ated by certain permutations, but a feasible deci-

sion may not correspond to a unique permutation.

In the following text on the design of evolution-

ary operators, we will elaborate some approaches

to avoid generating the same decision repeatedly.

It should be noted that the increase of the use

of any effective weapon without the violation of

constraints will further improve the objective value

and thus lead to a better decision. Therefore, the

decision scheme in which all APPs are assigned will

be optimal if it does not cause any violation of con-

straints. In general, however, the assignment of all

APPs is infeasible due to the limitation of the con-

straints in (2), (3) and (4). Although the above

construction procedure cannot ensure the optimal-

ity of generated decisions, it reduces the search

scope of the DWTA problem greatly. This is be-

cause the generated decision with constraint satu-

rations is the best feasible one among all feasible

decisions generated by the same permutation with

or without constraint saturations, and those infe-

rior feasible decisions will not be produced.

3 Evolutionary decision-making algo-
rithms

In the field of combinatorial optimization, it

has been shown that combining evolutionary al-

gorithms, e.g., genetic algorithms (GAs), with

problem-specific heuristics can lead to more effi-

cient approaches[17,26]. These hybrid algorithms

Table 1 Pseudocode for the construction procedure

Procedure construction (Pe) //Pe is a permutation of all AAPs (available assignment pairs; see Definition 1).

Initialize the saturation states of the constraints in (2), (3) and (4).

Let X = OW×T×S // a zero matrix

For k = 1 to size(SAAP)

If the assignment of the kth pair in the list L denoted by ik − jk − tk does not cause any violation of constraints

// L is the list formed by all AAPs in the order corresponding to the permutation Pe.

Let x(ik , jk, tk) = 1

Update the saturation states of constraints related to the assigned AAP.

If all constraints in (2), (3) or (4) are saturated

Break //The procedure is over since any additional assignment will cause the violation of certain constraint.

End If

End If

End For

End Procedure
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are often termed memetic algorithms (MAs), hy-

brid genetic algorithms, Lamarckian GAs, etc.[27].

In the framework of MAs, evolutionary algo-

rithms are expected to perform the global search

since they are usually competent for the global ex-

ploration of problem space. In contrast, problem-

specific heuristics are responsible for local improve-

ment. Thus, the synergy of global search and lo-

cal refinement, as a primary effect of hybridiza-

tion, contributes to the superiority of MAs. It has

been approved that MA is one of the most pop-

ular and effective algorithms to solve combinato-

rial optimization problems like QAP[25,26]. So, it is

rational to adopt MAs to solve the DWTA prob-

lem since it is also, as narrated above, a typical

combinatorial optimization problem. In addition,

we also employ genetic algorithms for performance

comparisons. Typically, the common procedure of

MAs developed on the framework of GAs can be

described as follows:

Step 1. Initialize population (denote by Pop

the initial population).

Step 2. Apply certain local refinement

method to improve the initial population:

Pop = Local Refinement(Pop).

Step 3. Apply crossover operations on

the population and use certain local refinement

method to improve the solutions generated by

crossover. Add the improved solutions into the

population.

Pop=Pop
⋃

Local Refinement(Crossover(Pop)).

Step 4. Apply mutation operations on

the population and use certain local refinement

method to improve the solutions generated by mu-

tation. Add the improved solutions into the popu-

lation.

Pop=Pop
⋃

Local Refinement(Mutate(Pop)).

Step 5. Apply selection operations on the

population to eliminate some bad solutions:

Pop = Select(Pop).

Step 6. If termination criteria are satisfied,

stop the algorithm; otherwise, go to step 3.

The utilization of local refinement operations

following initialization and all evolutionary opera-

tions except for selection, i.e., crossover and muta-

tion, is the primary difference between MAs and

their GA counterparts. So, the development of

MAs mainly includes the design of local refinement

approaches and that of GAs. In the following, we

will present the content of the GA for DWTA and

two local refinement approaches. Then, the resul-

tant MAs can be constructed easily according to

the above template for MA procedures. So, the de-

tails for MAs, for concision, will not be presented

later. We will differentiate the MAs proposed in

this paper by denominations later.

3.1 Local refinement approaches for

DWTA

The goal of local refinement is to improve the

current solution locally and even find a local op-

timum. Heuristic algorithms are often used to

achieve local refinement, and there are mainly

three kinds of heuristics — constructive methods,

enumeration or limited enumeration, and improve-

ment methods[25]. Constructive methods produce

new solutions directly according to some predefined

rules which usually contain some problem-specific

knowledge. Enumeration can guarantee the opti-

mality of generated solutions within certain neigh-

borhood. However, it will generally take a long

time to guarantee optimality when the search space

is very large. In this case, a limited enumera-

tion will be employed instead. The limited enu-

meration can reduce the execution time greatly;

howbeit, it loses the guarantee of optimality. Im-

provement methods correspond to local search al-

gorithms which are also termed as neighborhood

search. An improvement method begins with a

feasible solution and tries to improve it, search-

ing for other solutions in its neighborhood. In

the context of MAs, improvement methods are fre-

quently applied. A very effective local search oper-

ator for many combinatorial optimization problems

like QAP is the 2-opt operator which exchanges two

selected elements in a permutation[26]. In our re-

search, two local search methods based on a variant

of the 2-opt heuristic are employed respectively for

local refinement.
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As a first step at introducing the proposed local

refinement approaches, an illustrative example is

shown in Figure 1 to describe the rationale of the

basic operations in these approaches. As shown in

Figure 1, weapon i1 is assigned, as a result of the

assignment of AAP5, to target j1 in stage t2. Thus,

AAP8, if assigned, will make weapon i1 assigned to

two targets in the same stage and cause the viola-

tion of a constraint in (2). So it was discarded in

the process of construction procedure. All assigned

AAPs, abbr. AAAPs, form a feasible DWTA deci-

sion.

Any 2-opt operation within the set of AAAPs

will not produce a new decision since any two

AAAPs have no conflicts against each other in re-

spect of constraint satisfaction. In fact, only when

unassigned AAPs, abbr. UAAPs, are exchanged

with AAAPs, is a new decision likely to be gener-

ated. However, the AAAPs for exchange have to

be carefully chosen. For the purpose of ensuring

the birth of new decisions, a UAAP should be ex-

changed with the AAAPs which collide with the

UAAP regarding some constraints. These AAAPs

can be regarded as the competitors of the UAAP

to become the component of a feasible decision.

All AAPs are categorized into two sets — SAAAP

and SUAAP which, respectively, denote the set of

AAAPs and that of UAAPs. Each 2-opt operation

will select a UAAP from SUAAP at first. Then, a

competitive AAAP of the UAAP will be chosen for

exchange. Further, it is required that the value of

the AAAP is lower than that of the UAAP, which is

another means to curtail computation time. Note

that the value of an AAP denoted by i − j − t is

measured by the product of 1) the value of the as-

set threatened by target j, 2) the probability that

target j destroys the asset, and 3) the probabil-

ity that weapon i destroys target j. For example,

the AAP8 in Figure 1 can exchange with AAP5 to

produce a new decision. The neighborhood of the

selective 2-opt operation is defined as the set of all

permutations that can be formed by the current

permutation using this operation. The operation

is implemented iteratively according to two differ-

ent local search strategies as described below.

1) Steepest strategy[27]: Find the best decision

in the neighborhood of the current decision, and

replace the current decision with it. A new local

search proceeds in the neighborhood of the new de-

cision.

2) Greedy strategy[27]: Once a better decision is

detected in the neighborhood of the current deci-

sion, replace the current decision with it. A new

local search proceeds in the neighborhood of the

new decision.

The procedures of the two local search methods

based on the above operator are shown in Table 2

and Table 3, respectively.

In contrast to the greedy local search procedure,

the input variables of the steepest local search pro-

cedure, i.e., Pe and X , are not changed during its

implementation. It is easy to see that all solutions

generated by the above two local search approaches

are local optima. However, in our research, the

neighborhood of a permutation will not be com-

pletely searched since it is usually very large. In

order to reduce the complexity of local search ap-

proaches and make a better tradeoff between global

Figure 1 An illustration for the rational of basic operations.
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Table 2 Pseudocode for the greedy local search procedure

Procedure Greedy local search(Pe, X)

//The input parameter Pe is a permutation of all AAPs, and X is the decision w.r.t. Pe.

//Denote by N (Pe) the neighborhood of Pe.

Repeat

Implement a selective 2-opt operation on Pe to get a new permutation P
′

e .

Apply the construction procedure to get the new decision X
′

w.r.t. P
′

e .

If J(X
′
) > J(X) Then X = X

′
, Pe=P

′

e End If

Until ∀ P
′

e ∈ N (Pe): J(X
′
) 6 J(X)

Return Pe and X

End Procedure

Table 3 Pseudocode for the steepest local search procedure

Procedure Steepest local search(Pe,X)

//Record the currently best decision and its corresponding permutation: X
∗ = X, P ∗

e =Pe

Repeat

Implement a selective 2-opt operation on Pe to get a new permutation P
′

e .

Apply the construction procedure to get a new decision X
′

w.r.t. P
′

e .

If J(X
′
) > J(X∗) Then X

∗ = X
′
, P ∗

e =P
′

e End If

Until ∀ P
′

e ∈ N (Pe): J(X
′
) 6 J(X∗)

Return X∗ and P ∗

e

End Procedure

exploration and local refinement[28], we employ

truncated local searches. In the implementation

of the selective 2-opt operations above, all UAAPs

are sorted according to their values, and only 10%

of all UAAPs with larger values will be considered

for exchange.

We call the memetic algorithms corresponding

to the greedy local search (GLS) and the steepest

local search (SLS), MA-GLS and MA-SLS, respec-

tively.

3.2 A genetic algorithm for DWTA

The design of genetic algorithms mainly encom-

passes the encoding of solutions (i.e., the repre-

sentation of solutions), the initialization method,

the design of evolutionary operators and the set-

ting of parameters. Since a suitable representation

has been proposed above for DWTA solutions, the

following will focus on the latter three contents.

1) Initialization. The initial population is gen-

erated randomly without any heuristic informa-

tion. This is mainly because effective constructive

heuristics for DWTA may have a high complexity,

and random starting solutions in combination with

local refinement approaches, as shown above in the

common procedure of MAs, can produce relatively

good solutions.

2) Evolutionary operator 1 — Mutation. The

function of mutation in GAs is to randomly gener-

ate a new solution from an individual in the current

population. It is regarded as an important mech-

anism to keep population diversity. The mutation

operation for DWTA is described as follows:

First, randomly select m UAAPs from SUAAP.

The number of selected UAAPs, i.e., m, is

randomly selected from the set {1, 2, . . . , size

(SUAAP)}. Then, move the selected UAAPs in seq-
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Figure 2 A mutation example.

uence to the head of the mutated permutation. An

illustrative example for the mutation is shown in

Figure 2.

3) Evolutionary operator 2 — Crossover. The

main idea behind crossover is the inheritance of

“good” genes from parents. As often as it is,

two parent individuals (solutions) are randomly se-

lected for each crossover operation to generate an

offspring (new solution). Besides, a rule of thumb

for crossover is to preserve the alleles that are iden-

tical for the same genes in both parents[26]. That

is, it is checked whether each AAAP in the SAAAP

for one of the two parent permutations exists in the

SAAAP for the other parent. The common AAAPs

in both parents will be inherited and placed at the

head of their offspring. Particularly, the order of

the common AAAPs in the offspring will be the

same as that in the parent whose fitness (i.e., ob-

jective value) is better. The remaining AAPs for

the offspring will be arranged randomly in its per-

mutation.

4) Evolutionary operator 3 — Selection. The

widely applied selection strategy, (µ+λ)-selection,

is adopted since it has been proved to have good

performance in many researches[17,26,27].

5) Parameter settings. For GAs, the primary

parameters include population size (PS), cross-

over probability (Pc) and mutation probability

(Pm). However, in the context of MAs[26,27],

the latter two parameters are not necessary. In-

stead, the number of crossover and mutation oper-

ations per generation is adopted. Considering the

computational complexity of the local search ap-

proaches above, we follow the idea from Merz and

Freisleben[26] to set PS = 40, and the number of

crossovers and that of mutations per generation are

both set at 10.

4 Computational experiments

4.1 Test-case generator

Given W , T , K and S, the generator will pro-

vide the essential parameters for a DWTA in-

stance which include V = [vk]1×K , Q = [qjk]T×K ,

P
t = [pij(t)]W×T , Ni(i = 1, 2, . . . ,W ) and F

t =

[fij(t)]W×T (t = 1, 2, . . . , S). The instructions for

these parameters can be found in sections 2.1 and

2.2.

The values of assets, i.e., vk(k = 1, 2, . . . ,K),

are randomly generated in the interval (10, 100).

Since the number of targets is not less than that

of threatened assets, that is T > K, we assume

that the aim of the kth target is the kth asset

(k = 1, 2, . . . ,K) to ensure that each asset is

threatened by at least one target. The aims of

the remaining targets will be randomly selected

from K assets. Any target has no threat to the

assets which are not its aims. The parameters

qjk(j = 1, 2, . . . , T ; k = 1, 2, . . . ,K) are randomly

generated in the interval (0.6, 0.99). The param-

eters pij(t)(i = 1, 2, . . . ,W ; j = 1, 2, . . . , T ; t =

1, 2, . . . , S) are randomly generated in the interval

(0.4, 0.9). The engagement feasibility parameters

F
t(t = 1, 2, . . . , S) are also generated in a similar

way. However, more zeros will appear in F
t cor-

responding to later stages, which accords with the

fact that fewer weapons can be used in later sta-
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ges. Note that fij(t) = 0 implies that weapon i

cannot engage target j in stage t. The generation

of F
t(t = 1, 2, . . . , S) is shown as follows:

ratio(t) = fL + (fH − fL)(t − 1)/(S − 1)

for t = 1, 2, . . . , S;

fij(t) = [sign(rand − ratio(t)) + 1]/2

for i = 1, 2, . . . ,W ; j = 1, 2, . . . , T ; t = 1, 2, . . . , S,

where ratio(t) is the probability that fij(t) is set

to 0, fL and fH are predefined constants with

0 < fL < fH < 1 which reflect the lower and upper

bounds of ratio(t), respectively, rand represents a

random number in (0,1), and the function sign(·)

is equal to 1 if its argument is positive, −1 other-

wise. In our research, fL and fH are set at 0.1 and

0.9, respectively.

The generation of Ni (i = 1, 2, . . . ,W ) is cat-

egorized into three cases so as to cover different

defense scenarios.

Case 1. One weapon, one shot. Ni = 1 for

i = 1, 2, . . . ,W .

Case 2. No weapon can be used through all

stages.

Ni = ⌈S · rand/2⌉ for i = 1, 2, . . . ,W ;

Case 3. All weapons are available in all stages.

Ni = S for i = 1, 2, . . . ,W .

Case 1 represents a scenario of “insufficient” am-

munition since each weapon has at most one “bul-

let”. In contrast, Case 3 corresponds to a scenario

of “adequate” ammunition and each weapon can

be used through all defense stages. Case 2 stands

for a moderate one between the two extremes rep-

resented by Case 1 and Case 3. The three typical

cases are considered for a comprehensive compar-

ison of the DWTA algorithms under test. In our

simulation, the number of stages (S) is fixed at

4. The setting of the other three primary param-

eters W , T and K includes the following cases:

W10T10K10 (No. 1), W100T50K50 (No. 2),

W50T100K50 (No. 3), W100T100K50 (No. 4).

For practical military decision-making, the latter

three cases with four defense stages, i.e., No. 2,

No. 3 and No. 4, represent DWTA scenarios of

large enough scale.

4.2 Experimental results

The DWTA decision-making algorithms under test

include the GA, MA-GLS, MA-SLS proposed in

section 3. The maximal number of function evalua-

tions is set as NFEmax = 5W ·T ·S. In other words,

any algorithm will be terminated once NFEmax

DWTA decisions have been analyzed. This setting

is beneficial to observe the performance differences

of the algorithms under test. Each algorithm was

run 30 times for each test case with the results sta-

tistically analyzed. All algorithms were performed

on a PC with Intel(R) 2.0 GHz CPU and 2.0 GB

internal memory.

The statistical results are presented in Table 4.

In columns 2–4 of Table 4, the data in the first

and second rows for each case correspond to the

mean and standard deviation of finally discovered

best objective values (DBOV) and that of running

time, respectively. The best result in each case

is highlighted in bold. The results of two-tailed

t-tests (significance level: 0.05) for paired compar-

isons between DWTA algorithms are also provided

as shown in columns 5–7 of Table 4. A value of one

indicates that the first algorithm for a paired com-

parison performs with 95% certainty better than

the second algorithm. A value of −1 indicates that

the second algorithm outperforms the first one in

the aspect of optimization result or computation

time. A value of zero implies that the performances

are not statistically different. For example, in the

case labeled as “No. 1, Case 1”, MA-GLS (A2)

is superior to GA (A1) in respect of DBOV with

95% certainty since the corresponding t-test result

is one.

The convergence curves for the three algorithms

in each case are shown in Figure 3. Note that these

curves are the average of 30 runs. The three tested

algorithms perform comparatively when solving

the two simple instances of DWTA problem cor-

responding to “No. 1, Case 2” and “No. 1, Case

3”. The numbers of both weapons and targets

in the two instances are relatively small and the

equipped ammunition is sufficient, especially for

“No. 1, Case 3”, to guarantee a strong defense,

so it is easy for the three algorithms to find a de-

sirable high-quality decision. As shown in Figure
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Table 4 Statistical results about different algorithms

Algorithms t-test

Case
A1:GA A2:MA-GLS A3:MA-SLS A2 vs. A1 A2 vs. A3 A3 vs. A1

No. 1 337.0±1.4 345.2±2.1 343.6±2.5 1 0 1

Case 1 0.64±0.03(s) 0.68±0.03(s) 0.70±0.03(s) 0 0 −1

No. 1 382.7±1.2 383.1±2.8 382.9±1.5 0 0 0

Case 2 0.61±0.01(s) 0.65±0.02(s) 0.68±0.02(s) −1 0 −1

No. 1 389.3±1.0 391.3±2.2 389.5±2.3 0 0 0

Case 3 0.63±0.01(s) 0.68±0.02(s) 0.70±0.02(s) −1 0 −1

No. 2 1707.3±4.8 1743.7±5.2 1721.8±6.7 1 1 1

Case 1 118.2±0.2(s) 120.3±0.4(s) 122.7±0.5(s) −1 1 −1

No. 2 1739.4±4.4 1753.5±5.1 1744.2±6.3 1 1 0

Case 2 116.3±0.1(s) 118.1±0.3(s) 121.8±0.3(s) −1 1 −1

No. 2 1751.8±4.2 1777.2±4.9 1753.3±6.3 1 1 0

Case 3 112.7±0.1(s) 117.6±0.3(s) 121.3±0.3(s) −1 1 −1

No. 3 1441.6±6.2 1522.1±6.3 1467.5±7.2 1 1 1

Case 1 124.4±0.2(s) 128.2±0.4(s) 129.5±0.5(s) −1 1 −1

No. 3 1463.2±5.5 1541.9±6.1 1491.2±6.9 1 1 1

Case 2 120.1±0.1(s) 124.3±0.2(s) 126.9±0.3(s) −1 1 −1

No. 3 1471.8±5.3 1548.3±5.9 1527.1±6.7 1 1 1

Case 3 121.3±0.1(s) 123.7±0.2(s) 125.2±0.4(s) −1 1 −1

No. 4 1492.3±4.8 1583.1±5.2 1547.4±5.8 1 1 1

Case 1 213.8±0.3(s) 220.6±0.4(s) 225.3±0.6(s) −1 1 −1

No. 4 1537.5±4.2 1615.3±5.0 1587.6±5.3 1 1 1

Case 2 210.2±0.2(s) 217.2±0.3(s) 221.7±0.4(s) −1 1 −1

No. 4 1547.2±4.1 1621.7±4.9 1591.3±5.3 1 1 1

Case 3 210.3±0.2(s) 218.5±0.3(s) 222.5±0.4(s) −1 1 −1

3, the performance differences between the three

algorithms increase with the scale of DWTA prob-

lems. MA-GLS prominently outperforms GA and

MA-SLS in solving large-scale DWTA instances

from No. 2 through No. 3 to No. 4. MA-SLS also

has obvious advantages over GA in all large-scale

cases except “No. 2, Case 3”. The results shown

in Table 4 also indicate that the algorithm MA-

GLS has obvious advantages over GA and MA-

SLS especially in the decision-making of large-scale

DWTA problems. It should be noted that MA-

GLS and MA-SLS are a little more time-consuming

than GA in all cases. However, the trivial advan-

tage of GA in computation time, as shown in Table

4, may be neglected in contrast to its optimization

quality. Compared with GA, MA-SLS performs

better in the aspect of optimization quality. The

advantage of MA-GLS and MA-SLS over GA dem-
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Figure 3 Convergence curves for GA, MA-GLS and MA-SLS. (a) No. 1, Case 1; (b) No. 1, Case 2; (c) No. 1, Case 3; (d) No. 2,

Case 1; (e) No. 2, Case 2; (f) No. 2, Case 3; (g) No. 3, Case 1; (h) No. 3, Case 2; (i) No. 3, Case 3; (j) No. 4, Case 1; (k) No. 4, Case

2; (l) No. 4, Case 3.

onstrates that the cooperation of local search meth-

ods and global search implemented by GA can

improve the quality of DWTA decision-making

greatly. The advantage of MA-GLS over MA-SLS

shows that the utilization of greedy local search, in

contrast to steepest local search, can achieve better

tradeoff between the exploration and exploitation

of DWTA decision space.

5 Conclusions

In order to solve asset-based DWTA problems with

complicated constraints, a general “virtual” rep-

resentation of decisions which is in essence the

permutation of all assignment pairs was proposed

to facilitate the generation of feasible decisions.

A construction procedure which operates on the

virtual representation can guarantee the satisfac-
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tion of all constraints. Based on the construction

technique, three evolutionary decision-making al-

gorithms including a genetic algorithm and two

memetic algorithms were proposed to solve DWTA

problems. The proposed memetic algorithm based

on greedy local search can generate obviously bet-

ter DWTA decisions without the cost of overmuch

extra computation time than genetic algorithm

and the memetic algorithm based on steepest lo-

cal search.
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