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SUMMARY

This paper focuses on an adaptive robust dynamic surface control (ARDSC) with composite adaptation laws (CAL) for a
class of uncertain nonlinear systems in semi-strict feedback form. A simple and effective controller has been obtained by
introducing dynamic surface control (DSC) technique and designing novel adaptation laws. First, the ‘explosion of terms’
problem caused by backstepping method in the traditional adaptive robust control (ARC) is avoided. Meanwhile, through
a new proof philosophy the asymptotical output tracking that the ARC possesses is theoretically preserved. Second, when
persistent excitation (PE) condition satisfies, true parameter estimates could be acquired via designing CALs which integrate
the information of estimation errors. Finally, simulation results are presented to illustrate the effectiveness of the proposed
method. Copyright q 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past decades, control of uncertain nonlinear systems with strict or semi-strict feedback forms has received
much attention and various control algorithms have been considered [1–11]. Among them, an adaptive robust
control (ARC) proposed by Bin Yao et al. claims that it could deal with the parametric and nonlinear uncertainties
simultaneously [4, 5, 9, 12, 13]. The ARC combines deterministic robust control with adaptive control effectively
and has been widely used in motor servomechanisms [14, 15], hard-disk control systems [16], hydraulic systems [17]
and levitated systems [18]. Although ARC achieves many fruits in real application, it still has some drawbacks: First,
due to using the backstepping design philosophy, its controller is quite complicated and tedious in implementation
when the system order is equal to or greater than three. The control signal u will include the nth derivative of
the first virtual control, the (n−1)th derivative of the second virtual control, and so on, which will lead to the
‘explosion of terms’ phenomena that can be seen in [4, 5, 9, 10]. In addition, the complicated and tedious control
law will cost a lot of hardware resources and increase the unnecessary cost of control system in real application.

∗Correspondence to: Zhiping Li, School of Automation, Beijing Institute of Technology, Beijing 100081, People’s Republic of China.
†E-mail: lizplst@gmail.com

Copyright q 2010 John Wiley & Sons, Ltd.



ADAPTIVE ROBUST DYNAMIC SURFACE CONTROL 1037

Second, the parameter adaptation law in normal ARC is synthesized for a sole objective of reducing the output
tracking error based on the Lyapunov stability analysis. This kind of gradient adaptation law only driven by tracking
error signals has a simple form but often exhibits slow parameter convergence rate and rough estimate of parameter
in comparison with other possible adaptive update laws (e.g. least square update law). That will cause the following
problem: whether the parameters converge to their true value or not is unclear (i.e. the function of adaptive term in
ARC hardly puts into great play).

To overcome the first drawback in ARC, a dynamic surface control (DSC) technique [19, 20] consists of a linear
filter for derivative generation was proposed. It utilizes a simpler algebraic operation in lieu of the operation of
differentiation. As a result, the tedious and complicated derivatives of virtual control laws are avoided. In [21],
Zi-Jiang Yang et al. designed an ARC using the DSC technique for a levitated system for the first time. Subsequently,
they expanded this method to a class of nonlinear systems in semi-strict feedback form [22]. Afterwards, Jie Chen
research group inherits and develops this approach and applied it in servomechanisms successfully [23]. However,
all the above methods could show that the signals in the system are bounded even if only parametric uncertainty
exists and did not do any further contributions on the parameter convergence.

It is well known that parameter convergence is an old and important issue since it enhances the overall stability
and robustness of the closed-loop adaptive control systems [24]. Variety of parameter convergence results have been
developed to compensate for the linear-in-the-parameters uncertainty in nonlinear systems [1, 4–10, 25–29]. Most
of this research has exploited the Lyapunov-based and estimation-based techniques. Lyapunov-based methods could
always guarantee the stability of the closed-loop systems, result in a simple gradient type structure of update law
but often lead to weakness parameter convergence as the update law is usually designed to cancel the cross terms.
While estimation-based methods make the update law design freely where the modular design method [29] is always
employed to guarantee the stability of systems with strong controllers. Therefore, many identification methods
(e.g. least-square method and its varieties [30, 31]) can be adopted to guarantee well parameter convergence. For
example, in order to solve the second drawback in normal ARC, Bin Yao et al. proposed an IARC method, in which
the update law is estimation-based and the least-square method is used to achieve true parameter estimates [26].
Similarly, a modular ARC was investigated in [27] for a class of semi-strict feedback nonlinear systems where the
Lyapunov-based update law is replaced by an estimation-based update law. However, these least-square methods
and the modular design philosophy increase the complexity of controller design and controller’s conservatism,
respectively. This departs from our original intention. Thus, the research of this paper is motivated by the following
question: Can we retain the advantages of the original ARC (i.e. prescribed transient performance and asymptotical
tracking performance in the presence of the parametric uncertainties only) when the DSC technique is involved
and meanwhile seek a simpler update law from the Lyapunov stability analysis with fast and accurate parameter
estimates?

The results in this paper will give an assured answer. Herein, we propose an adaptive robust dynamic surface
control (ARDSC) for a class of uncertain nonlinear system in semi-strict feedback based on composite adaptation
laws. The property of the derivative of the virtual control �̇i defined in the next section is further analyzed and a
composite gradient type of adaptive update law derived from the Lyapunov stability analysis is redesigned. As a
result, we can theoretically prove that (1) not only all the signals in the system are uniformly ultimately bounded,
(2) but also a faster asymptotical tracking is achieved even though the DSC technique is involved, (3) and true
parameter estimates can be obtained when the persistent excitation condition is satisfied in the presence of parametric
uncertainties only.

The remainder of the paper is organized as follows. In Section 2, the problem and some preliminaries are declared.
Design procedures of controller and parameter adaptation are provided in Section 3. Stability and performance
analysis of the system are given in Section 4. In Section 5 the advantages of the proposed ARDSC with composite
adaptation law (CAL) are illustrated by some comparative simulations, and concluding remarks are shown in
Section 6.
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2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following semi-strict feedback uncertain nonlinear system

ẋi = �T
i (x1, . . . , xi , t)�i +bi xi+1+di (x, t), i=1, . . . ,n−1,

ẋn = �T
n (x1, . . . , xn, t)�n+bnu+dn(x, t),

y = x1,

(1)

where x=[x1, x2, . . . , xn]T∈ Rn is the state vector, y∈ R and u∈ R are the system output and input, respectively, bi is
the unknown input gain of the i th channel, �i ∈ Rpi , i=1, . . . ,n represent the vectors of other unknown parameters,
di (x, t) is the uncertain nonlinearity in the i th channel and �i (x1, . . . , xi , t)∈ Rpi , i=1, . . . ,n are known smooth
functions. As shown, system (1) is suffered from nonlinear uncertainties di (x, t) and parametric uncertainties �i ,bi
simultaneously. The problem is to design a bounded control law for the input u such that the system is stable and the
output y tracks the desired output trajectory xr as closely as possible in spite of the aforementioned uncertainties.

Throughout this paper, the following notations will be used. In general, the operation � for two vectors is
performed in terms of the corresponding elements of the vectors. Let �̂ denote the estimate of � (e.g. �̂i for �i ) and
�̃ is defined as �̃=�− �̂. ‖�‖ denotes the Euclidean norm of �.

To facilitate control system design, the following assumptions and preliminaries are needed.

Assumption 1
The unknown parameter vectors �i ∈�i (i=1, . . . ,n) and �b=[b1, . . . ,bn]T∈�b, where �i ={�i ∈ Rpi |�imin��i�
�imax}; �b={�b∈ Rn|0<�bmin��b��bmax}; �imin, �imax, �bmin, �bmax are known vectors.

Assumption 2
The unknown uncertain nonlinearities di (x, t) are assumed to be bounded by

|di (x, t)|��i , i=1, . . . ,n, (2)

where �i are known positive constants.

Assumption 3
The desired trajectory vectors are continuous and available, and [xr , ẋr , ẍr ]T∈�r with a known compact set
�r ={[xr , ẋr , ẍr ]T : x2r + ẋ2r + ẍ2r �B0}⊂ R3, whose size B0 is a known positive constant.

Lemma 1 (Krstic et al. [1])
Consider the function � : R+ → R. If �, �̇∈L∞, and �∈L p for some p∈[1,∞), then

lim
t→∞�(t)=0. (3)

Fact 1
For a∈ R, b∈ R and c∈ R+, the following inequality holds:

a ·b�ca2+ 1

4c
b2. (4)
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Discontinuous projection operator

In order to guarantee that the parameter estimates in the adaptive procedure are bounded, the discontinuous projection
operator [4, 5, 22] is introduced herein with the following expression and properties:

Proj�̂(•)=

⎧⎪⎨
⎪⎩
0 if �̂i =�i(max) and •>0,

0 if �̂i =�i(min) and •<0,

• otherwise,

(5)

where �, �̂ represent the unknown parameter vector to be online updated and its estimate respectively. The
footnote i denotes the i th element. i(min), i(max) denote minimum and maximum values of the i th element of �,
respectively. ‘•’ represents any reasonable adaptation function.

Choose the parametric adaptation as

˙̂�=Proj�̂(��), (6)

where �>0 is a diagonal matrix, � is an adaptation function. It can be shown that for any adaptation function �,
the projection mapping used in (6) guarantees

Property 1: �̂∈�� ={�̂ :�min��̂��max}, (7a)

Property 2: �̃
T
(�−�−1Proj�̂(��))�0 ∀�. (7b)

3. DESIGN OF THE CONTROLLER AND PARAMETER ADAPTATION LAW

In this section, first we take the DSC technique to design an ARC instead of the integral backstepping method to
avoid the so-called ‘explosion of terms’ problem. Then we elaborately design a novel update law to ensure the true
parameter estimates.

3.1. Controller design

Unlike the traditional ARC designing procedure, a dynamic surface control approach is utilized in this paper. The
ARDSC design is based on the following coordinates transformation: si = xi −xir , (i=1, . . . ,n), where x1r equals
to the desired trajectory xr , and xir (i>1) is the output of a first-order filter with input �i−1 which is denoted as
a virtual control for the corresponding (i−1)th subsystem of system (1). At the last step, �n is constructed as the
system control law u.

The concrete design procedure is given as follows.
First, consider the i th (i=1, . . . ,n−1) equation of system (1)

ẋi =�T
1 (x1, . . . , xi )�i +bi xi+1+di (x, t). (8)

Define the i th dynamic surface as si = xi −xir . Then its derivative is

ṡi =�T
i (x1, . . . , xi )�i +bi xi+1+di (x, t)− ẋir. (9)
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The purpose is to synthesize a virtual control function �i for xi+1 so that the i th dynamic surface converges to zero
or some small values with a guaranteed transient. Therefore the virtual control �i is constructed as follows:

�i = �ia+�is,

�ia = (−�T
i (x1, . . . , xi )�̂i + ẋir)

b̂i
,

�is = �is1+�is2,�is1=− kis
bimin

si ,

(10)

where �ia represents the adjustable model compensation; �is is the robust control law consisting of two parts: �is1,
a simple proportional feedback in this case is used to stabilize the nominal system, and �is2 to be synthesized later
represents robust feedback for attenuating the effect of model uncertainties.

Next define the (i+1)th dynamic surface si+1= xi+1−x(i+1)r where x(i+1)r equals �i passed through a first
order low-pass filter, i.e.

�i+1 ẋ(i+1)r +x(i+1)r =�i , x(i+1)r (0)=�i (0). (11)

Define yi+1= x(i+1)r −�i , zi =[si , yi+1]T and vi =[si+1, �̇i ]T, then the i th error equation Ei can be described as

Ei : żi = Ai zi +Bivi +Di (x, t,�), (12)

where

Di (x, t,�)=
[
b̃i�ia+�T

i (x1, . . . , xi )�̃i +di (x, t)+bi�is2

0

]
, Bi =

[
bi 0

0 −1

]
,

Ai =

⎡
⎢⎢⎣

− bi kis
bimin

bi

0 − 1

�i+1

⎤
⎥⎥⎦ ,

vi is considered as input.

Lemma 2
The error equation Ei is input-to-state stable (ISS) if the robust control �is2 satisfies the following conditions:

(i) si [b̃i�ia+�T
i (x1, . . . , xi )�̃i +di (x, t)+bi�is2]�εi ,

(ii) si�is2�0,
(13)

where εi is an arbitrary small positive constant.

Proof
Choose a positive-definite function (p. d. f.) Vi =(1/2)zTi zi . Noting (12), its time derivative is

V̇i = zTi Ai zi +zTi Bivi +zTi Di

= − bi kis
bimin

s2i +si [b̃i�ia+�T
i (xi )�̃i +di (x, t)+bi�is2]+bi si (yi+1+si+1)+ yi+1

(
− yi+1

�i+1
− �̇i

)
. (14)
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From Fact 1 and (13), the following inequality is obtained

V̇i�−kiss
2
i +εi +2bimaxs

2
i +

(
1

4
bimax+1− 1

�i+1

)
y2i+1+ 1

4
|�̇i |2+ 1

4
bimaxs

2
i+1. (15)

Thus, there exists kis and �i+1 such that

V̇i�−	i Vi +
i‖vi‖2+εi , (16)

where 	i and 
i are some positive constants. Then we can conclude that

‖zi (t)‖2�
i‖vi (t)‖2+εi

	i
(1−e−	i t )+‖zi (0)‖2e−	i t , (17)

which indicates that Ei is ISS. �

Remark 1
According to the proof of Lemma 2, we know that as long as the disturbance-like term Di (x, t,�) is bounded, the
input-to-state stability of error system Ei holds. Here, the purpose that we need the robust control term �is2 to satisfy
the condition (13) is to achieve uniformly ultimately bounded results for the solutions of the whole closed-loop
system and provide a guidance for designing the robust control term �is2.

Finally, consider the nth equation of system (1) and define the nth dynamic surface sn = xn−xnr. Then we have

ṡn =�T
n (x1, . . . , xn)�n+bnu+dn(x, t)− ẋnr. (18)

The overall control law u=�n can be similarly constructed as

�n = �na+�ns,

�na = (−�T
n (x1, . . . , xn)�̂n+ ẋnr)

b̂n
,

�ns = �ns1+�ns2,�ns1=− kns
bnmin

sn .

(19)

For the sake of convenience, let zn =sn and substitute (19) into (18), then the nth error equation En can be
described as

En : żn =− bnkns
bnmin

zn+ b̃n�na+�T
n (x1, . . . , xn)�̃n+dn(x, t)+bn�ns2. (20)

Lemma 3
The error equation En is stable, if �ns2 is chosen to satisfy the following two conditions:

(i) sn[b̃n�na+�T
n (x1, . . . , xn)�̃n+dn(x, t)+bn�ns2]�εn,

(ii) sn�ns2�0,
(21)

where εn is an arbitrary small positive constant.
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Proof
Choose a p. d. f. function Vn =(1/2)z2n . Its time derivative satisfies

V̇n = − bnkns
bnmin

z2n+sn[b̃nua+�T
n (x1, . . . , xn)�̃n+dn(x, t)+bnus2]

� − bnkns
bnmin

z2n+εn. (22)

It implies that there exists some control gain kns such that

‖zn‖2� εn

	n
+

(
‖zn(0)‖2− εn

	n

)
e−	nt , (23)

where the 	n is a positive constant corresponding to kns. Thus the nth error equation En is stable. �

Remark 2
From the above design procedure, we know that the derivative of virtual control �n−1 is substituted by ẋnr. Thus the
expression of final control law u is much simpler than those in [4, 9], which enhances the practicality of controller
and develops the application fields of the ARC.

Remark 3
As shown in Section 3.1, the entire error system (closed-loop system) consists of n−1 ISS subsystems and one
stable system. Thus the recursive system is bounded stable if the input vectors vi , i=1, . . . ,n−1 are bounded. In
other words, from Lemma 2 we know that sn−1, . . . ,s1 will be also bounded.

3.2. Composite adaptation laws

In ARC, the adaptive update law derived from the Lyapunov stability analysis is usually driven by system tracking
errors only, which leads to slow and rough parameter estimation. In this section, a novel update law is elaborately
designed not losing the conciseness of the update law in normal ARC, whereas at the same time it overcomes the
above problem.

Let �=[�T1 ,�T2 , . . . ,�Tn ,�Tb ]T∈ Rp, where p= p1+·· ·+ pn+n, and rewrite system (1) to the following
compact form

ẋ=F(x,u, t)�+ f (x,u, t)+d(x, t), (24)

where f (x,u, t)∈ Rn is added for generality and represents the lumped effect of all known nonlinearities, which is
zero for (1);

F(x,u)=

⎡
⎢⎢⎢⎢⎢⎢⎣

�T
1 · · · 0 0 x2 0 · · · 0

0 �T
2 · · · 0 0 x3 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 · · · �T
n 0 0 · · · u

⎤
⎥⎥⎥⎥⎥⎥⎦
n×p

, d(x, t)=[d1, . . . ,dn]T.

Construct the following two filters:

�̇ = −k(t)�+F(x,u, t), (25a)

�̇0 = −k(t)(x+�0)− f (x,u, t), (25b)

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2010; 24:1036–1050
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where k(t)=k0+k1(t),k0>0,k1(t)>0. Let �= x+�0. From (3.2), its time derivative is

�̇=F(x,u, t)�−k(t)(x+�0)+d. (26)

Define �=�−��, then its derivative is

�̇=−k(t)�+d, (27)

which indicates that �→0, when t→∞ on the condition of d≡0.
Define P(t)=∫ t

0 �T(�)�(�)d�, Q(t)=∫ t
0 �T(�)(�(�)−�(�))d�, we have P(t)�=Q(t).

Let �=[s1�T
1 (x1), . . . ,sn�T

n (x),s1�1a, . . . ,sn�na]T. Then a novel adaptation law is chosen as

˙̂�=Proj(�(�K (P�̂−Q))), (28)

where K>0 is a diagonal matrix.

Remark 4
We call the adaptation law (28) as a CAL since, unlike References [4, 18], the adaptation law (28) makes full use
of the parameter adaptation error �̃ and tracking errors si , i=1, . . . ,n. In addition, it has the gradient type which is
different from Reference [26]. As such, choosing a proper learning factor K and �, simple and accurate parameter
estimation can be obtained.

Remark 5
From (28), we will obtain that ˙̃�=Proj(−�s�(x, t)−�K P�̃). It means that the parameter convergence rate can
be adjusted by learning factors �, K and faster convergence rate can be obtained through adjusting K when the
controller parameters are the same. Furthermore, if the tracking error s converges to zero and the matrix �K P is
positive definite, the parameter error �̃ will converge to zero. While for the normal adaptation laws proposed in [4, 9],
the parameter error dynamics is described as ˙̃�=Proj(−�s�(x, t)). This indicates that the parameter convergence
rate depends on the tracking error whose convergence rate then depends on the controller parameters. Even more
unfortunate, although the tracking error s→0, we have no idea whether the unknown parameters converge to their
true values or not.

4. ANALYSIS OF THE STABILITY AND PERFORMANCE

From Lemma 3, we know that the nth dynamic surface sn is uniformly bounded. Therefore sn−1 is bounded if �̇n−1
is bounded. Keeping a job, a bounded tracking error s1 can be deduced. The analysis in detail will be shown in
Theorem 1.

Actually, the explicit term of �̇i can be expanded as follows:

�̇i = 1

b̂2i

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣−��T

i (x1, . . . , xi )

�(x1, . . . , xi )

⎡
⎢⎢⎢⎣
ẋ1

...

ẋi

⎤
⎥⎥⎥⎦ �̂i −�T

i (x1, . . . , xi )
˙̂�i + ẍir

⎤
⎥⎥⎥⎦ b̂i −�T

i (x1, . . . , xi )�̂i
˙̂bi

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

− kis
bimin

ṡi + �̇is2. (29)

In order to guarantee that the derivative of �i is bounded by a continuous function
Ci (s1, . . . ,si+1, y2, . . . , , yi+1, �̂1, . . . , �̂i , b̂1, . . . , b̂i , x1r , ẋ1r , ẍ1r ), i.e.

|�̇i |�|Ci (s1, . . . ,si+1, y2, . . . , yi+1, �̂1, . . . , �̂i , b̂1, . . . , b̂i , x1r , ẋ1r , ẍ1r )|, (30)
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where Ci is some continuous function with maximum value Mi on a compact set, the �is2(i=1, . . . ,n) in this paper
is chosen to be

�is2=− hi
2biminεi

si , (31)

where hi is any constant satisfying hi�|bimax−bimin|2|�ia|2+‖�imax−�imin‖2‖�i (x1, . . . , xi )‖2+�2i .

Assumption 4
Given any positive constant �, all initial conditions of the subsystems Ei are in the compact set �0=
{(z1, . . . , zn)|∑n

i=1 ‖zi (0)‖2�2�}.
Theorem 1
Consider the uncertain nonlinear system (1) with control law (19). If all the Assumptions 1–4 are established and
the parameter adaptation is closed, then there exists kis1,�i+1 such that all the signals si , yi+1,�i are uniformly
ultimately bounded and the steady-state tracking error s1 is smaller than a prescribed error bound.

Proof
According to Lemmas 2 and 3, choose a Lyapunov function V =∑n

i=1 Vi , then its time derivative satisfies

V̇ �
n∑

i=1
(−kiss

2
i +εi )+

n−1∑
i=1

(
2bimaxs

2
i + 1

4
bimaxs

2
i+1

)
+

n−1∑
i=1

[(
− 1

�i+1
+ 1

4
bimax+1

)
y2i+1+

1

4
|�̇i |2

]
. (32)

Thus, there exists kis1,�i+1 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1s � 2b1max+
,

kis � 2bimax+ 1

4
b(i−1)max+
, i=2, . . . ,n−1,

kns � 1

4
bnmax+
,

1

� j+1
� 1

4
b jmax+1+
, j =1, . . . ,n−1,

(33)

such that

V̇�−2
V +�, (34)

where 
 is some positive constant, �=∑n
i=1 εi +∑n−1

i=1
1
4 |�̇i |2. From (30) and Assumption 4, � is bounded. If we

choose 
��/2�, then V̇�0. Thus, V (t)�2� is an invariant set on t ∈[0,∞), i.e., (34) holds for all t ∈[0,∞).
From (34), we have

0�V (t)� �

2

+

(
V (0)− �

2


)
e−2
t . (35)

It implies that si , yi+1 is uniformly ultimately bounded. Since Assumption 1 holds and parameter adaptation is
closed, �̂ is bounded. Thus, from (30) the control law �i is bounded. Moreover, the error bound is prescribed by
choosing a proper constant 
. �

Copyright q 2010 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2010; 24:1036–1050
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Remark 6
Theorem 1 shows that the proposed ARDSC can achieve a guaranteed transient performance and final output
tracking accuracy in general—in the sense that the exponentially converging rate 2
 and the bounds of the final
tracking error index can be adjusted by suitably choosing the design parameters.

In the recent literatures with respect to ARDSC (e.g., References [21–23]), Theorem 1 is their ultimate conclusion
even if only parametric uncertainties exist. Actually, the asymptotical tracking performance of ARDSC is intrinsic
when the adaptive control is active. What leads to the conservative results is that only the bound of �̇i is simply
considered. Therefore, in this paper, we further analyze the property of �̇i to expect a better result (e.g., asymp-
totical tracking theoretically) and show how to achieve true parameter estimates in the presence of the parametric
uncertainties only, which is refined as Theorem 2.

Theorem 2
Consider the uncertain nonlinear system (1) while the control law is fixed as (19). The parameter adaptation law
is given by (28). If all the Assumptions 1–4 are established and uncertain nonlinearities in system (1) are absent,
i.e., di (x, t)=0(i=1, . . . ,n), then asymptotical output tracking and true parameter estimates can be achieved via
design proper controller parameters kis,�i+1 and learning factors �, K .

Proof
Choose a Lyapunov function V� as

V� =V + 1
2�̃

T
�−1�̃. (36)

According to the subsystems 	i and update law (28), its time derivative is

V̇� =
n−1∑
i=1

[
− bi kis
bimin

s2i +si�ia b̃i +si�
T
i (x1, . . . , xi )�̃i +si (di (x, t)+bi�is2)

]

+
n−1∑
i=1

[
bi si (yi+1+si+1)+ yi+1

(
− yi+1

�i+1
− �̇i

)]
− bnkns
bnmin

s2n +snb̃nua+sn�
T
n (x)�̃n+sn(dn(x, t)+bnus2)

+�̃
T
�−1Proj(�−K (P�̂−Q))

=
n∑

i=1

[
− bi kis
bimin

s2i +si (di (x, t)+bi�is2)

]
+

n−1∑
i=1

[
bi si (yi+1+si+1)+ yi+1

(
− yi+1

�i+1
− �̇i

)]

+�̃
T
(�−K (P�̂−Q))+�̃

T
�−1Proj (�−K (P�̂−Q))+�̃

T
K(P�̂−Q). (37)

If the uncertain nonlinearities di (x, t)=0 and the control parameters are chosen as (28), then the following inequality
holds:

V̇��−2
V +
n−1∑
i=1

(−yi+1�̇i )+�̃
T
K (P�̂−Q). (38)

If the persistent exciting condition is satisfied, i.e. there exists a time instant tc such that P(tc)=
∫ tc
0 �T(�)�(�)d���I ,

where � is some positive constant, and I denotes the identity matrix with proper dimensions, then we have

V̇��−
zTz−	min(K P)�̃
T
�̃+

n−1∑
i=1

(−yi+1�̇i ), (39)

where 	min(K P)>0 denotes the minimum eigenvalue of the matrix K P .
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Integrating both the sides of (39) on t ∈[0,∞), the following inequality holds:∫ ∞

0
(
zTz+	min(K P)�̃

T
�̃)dt�V�(0)−V�(t)+

n−1∑
i=1

max
0�t<∞

|yi+1||�i (t)−�i (0)|. (40)

From the conclusion of Theorem 1, V�(0)−V�(t) is bounded on t ∈[0,∞) and
∑n−1

i=1 max0�t<∞ |yi+1||�i (t)−�i (0)|
is also bounded. Thus, (40) implies that the signals z,�̃∈L2[0,∞). In addition, according to Theorem 1, z, �̃∈
L∞[0,∞). From the error equation Ei and parameter adaptation law (28), the signals derivatives ż, ˙̃�∈L∞[0,∞).
Therefore, according to Lemma 1, the signals z, �̃→0 when t→0. �

Remark 7
The proper controller parameters kis , �i+1 mentioned in Theorem 2 first should satisfy (33) to guarantee the output
tracking performance. We can require desired tracking performance by choosing larger 
, � carefully since the
larger 
 is selected, the smaller filter constant �i+1 is needed and the larger control value will be. This makes the
controller hard to implement in real systems. On the contrary, larger learning factors �, K will bring about a faster
learning procedure but possibly make the learning oscillated especially when the projection operator is used. As a
result, the proper learning factors also should be elaborately selected by trial-and-error method.

Remark 8
Theorem 2 indicates that by integrating the term of �̇i and using the composite update law (28), the asymptotical
output tracking and parameter convergence can be proved. These results are much superior to those in [22, 23].
In addition, the update laws achieve the same results as those in [26] but with simpler forms.

5. COMPARATIVE SIMULATION RESULTS

To illustrate the advantages of the proposed control algorithm and CAL, some comparative simulation results are
obtained from a third-order uncertain nonlinear system described by the following mathematical equations.

ẋ1 = b1x2+�T
1 (x1)�1+d1(x, t),

ẋ2 = b2x3+�T
2 (x1, x2)�2+d2(x, t),

ẋ3 = b3u+�T
3 (x1, x2, x2)�3+d3(x, t),

y = x1,

(41)

where

�1(x1) = x21 sin x1, d1(x, t)=0.3(x21)
1/3 sin(x2),

�2(x1, x2) = [x1x2, x2 cos x1]T, d2(x, t)=0.3x1x2 sin x3,

�3(x1, x2, x3) = [x1x3, x21 sin x3, x3 sin x2]T, d3(x, t)=0.3x3 sin(10�t).

Suppose �=[�T1 ,�T2 ,�T3 ,b1,b2,b3]T and its nominal values are given as: �0=[2,1,1.5,1,2,0.5,1,2,3]T.
The bounds of unknown parameters are supposed as �min=[0,0,0,0,0,0,0.1,0.2,0.3]T and �max=[4,2,3,2,4,1,
2,4,6]T. The initial parameter estimates are �̂(0)=[1,0.5,0.5,0.2,1,0.1,0.5,0.5,6]T, which are different from
the nominal values �0=[2,1,1.5,1,2,0.5,1,2,3]T to test the effect of parametric uncertainties. The objec-
tive is to design a control law u such that the output of the closed-loop system can track a reference input
xr =sin(2�t) as closely as possible. The controller parameters are chosen as follows: 
=10, �1s2=−10s1,
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�2s2=−10s2, �3s2=−10s3, �2=�3=0.002, �=diag(50,50,50,100,100,100,100,10,1), K =diag(5×104,5×
104,5×104,500,1000,500,1×104,1000,1). When using the normal adaptation laws, K is set to zero.

In order to show the simplicity and effectiveness of the controller and adaptation law, the following three cases
are elaborately designed.

5.1. Case I: ARDSC with CAL and ARC considering uncertain nonlinearities

The purpose in this case is to show that the ARDSC is much simpler than the ARC but retains the same advantages
at least. The output tracking errors in this case are shown in Figure 1. Comparing the mathematical expressions of
ARC in Section 3.2 of reference [26] with those in Section 3 of this paper, the simplicity of the ARDSC has been
represented obviously. And from Figure 1, we can see that both the system tracking errors step into some boundaries
with a prescribed transient stage and converge to small values gradually along with the parameter learning going
on. Actually, the small values are corresponding to the bounds of uncertain nonlinearities di (x, t). Moreover, when
di (x, t) vanish, these small values will converge to zero, namely, the tracking errors will converge to zero.

5.2. Case II: ARDSC with CAL or normal adaptation laws(NAL) not considering uncertain nonlinearities

In this case, we will show the effectiveness of CAL. The compared simulations are only executed in ARDSC
between CAL and NAL. The results are shown in Figures 2 and 3.

0 5 10 15 20 25 30 35 40

0

0.01

0.02

s 1

time (s)

ARDSC
ARC

Figure 1. Output tracking errors using ARDSC and ARC, respectively.

0 5 10 15 20

0

0.02

0.04

time (s)

s 1

CAL
NAL

Figure 2. Output tracking errors not considering uncertain nonlinearities.
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Figure 3. Parameter estimates not considering uncertain nonlinearities.

As we see in Figure 2, the tracking errors converge to zeros gradually. The difference between the curves is that
the convergent rate of ARDSC with CAL is much faster than that with NAL, which indicates that utilizing the
CAL is helpful to improve the tracking performance. In addition, Figure 3 shows that ARDSC with CAL could not
only leads to a more accurate estimation of unknown parameters than that with NAL, but also a faster parameter
convergence rate. All the results illustrated in Figures 2 and 3 imply that designing a novel adaptation law is a very
useful way to improve the performance of control and parameter estimation.

5.3. Case III: ARDSC with CAL or NAL considering uncertain nonlinearities

The following simulation shows that even the system is affected by uncertain nonlinearities, ARDSC with CAL
can still obtain well control performance and parameter estimation. The simulation results are shown in Figures 4
and 5. From Figures 4 and 5, we could see that both the tracking error and parameter estimations are with a faster
convergence rate and higher precision because of using CAL. Thus, no matter the uncertain nonlinearities exist or
not, the proposed ARDSC with CAL can achieve more satisfying tracking performance and parameter estimation.

6. CONCLUSIONS

This paper discusses an ARDSC for uncertain nonlinear systems in semi-strict feedback form. Two issues are
commendably solved. One is that the ‘explosion of terms’ problem is overcome via introducing the DSC technique
without losing the original advantages of ARC. Another is that parameter estimates can converge to their true
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Figure 4. Output tracking errors considering uncertain nonlinearities.
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Figure 5. Parameter estimates considering uncertain nonlinearities.

values faster via designing composite update laws, which leads to a better tracking performance. Naturally, all the
improvements claimed above are theoretically proved and verified by simulation results.
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