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a b s t r a c t

In this paper, we develop a new finite-time formation control framework for multi-agent systems
with a large population of members. In this framework, we divide the formation information into two
independent parts, namely, the global information and the local information. The global formation
information decides the geometric pattern of the desired formation. Furthermore, it is assumed that only
a small number of agents, which are responsible for the navigation of the whole team, can obtain the
global formation information, and the other agents regulate their positions by the local information in a
distributed manner. This approach can greatly reduce the data exchange and can easily realize various
kinds of complex formations. As a theoretical preparation, we first propose a class of nonlinear consensus
protocols, which ensures that the related states of all agentswill reach an agreement in a finite time under
suitable conditions. And then we apply these consensus protocols to the formation control, including
time-invariant formation, time-varying formation and trajectory tracking, respectively. It is shown that
all agents will maintain the expected formation in a finite time. Finally, several simulations are worked
out to illustrate the effectiveness of our theoretical results.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the formation control problem for a
group of agents, which is a popular research topic in decentralized
control. Traditional methods in the study of formation control
generally fall into three categories, namely, the leader-following
approach (Egerstedt & Hu, 2001; Egerstedt, Hu, & Stotsky, 2001;
Leonard & Fiorelli, 2001; Shao, Xie, & Wang, 2007), the behavior-
based approach (Arkin, 1998; Balch & Arkin, 1998; Lumelsky &
Harinarayan, 1997), and the virtual structure approach (Lewis &
Tan, 1997). In addition, the techniques from algebraic graph theory
are usually used to tackle the modeling problem of information
flow or interaction topology (Fax & Murray, 2004).
Up to now, most of the existing work on formation control

has been based on a common assumption that each agent knows
the formation information, namely, each agent can obtain the
information about its position in global coordinates in the expected
formation. However, this assumption is impractical or unnecessary
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in many practical situations. For instance, when the number of
agents is very large, it is costly to convey the formation data to each
agent. Furthermore, there aremanyuncertainties and disturbances
in the real environment, which may result in information
transmission failure. Also, in many cases, it is enough to pay more
attention to the positions of some key members in formation
maintenance, in other words, some formations do not have strict
requirements on all agents’ positions. One simple example is the
line formation with loose space constraint between agents.
In this paper, we present a new formation control framework,

applicable in the above mentioned cases. Our work is somewhat
motivated by the swarming behavior in the real world (Couzin,
Krause, Franks, & Levin, 2005) and by the work on the formation
control (Lafferriere, Williams, Caughman, & Veerman, 2005; Ren,
2006, 2007; Shao et al., 2007). The basic idea is given as follows:

(1) the formation information is divided into two independent
parts, namely, the global one and the local one;

(2) the global information decides the geometric pattern of the
desired formation, and a small number of agents, which are
called leaders and responsible for navigating the whole team,
can obtain the global formation information;

(3) the local information decides the relative positions of followers
with respect to the frame decided by leaders; and the local
information may not be strictly specified in applications;

(4) all members adjust their positions in a distributed manner.

0005-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2009.07.012
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It is of importance to note that the definition of leaders here
is different from that in the leader-following control, which is
defined by the topology of information flow, but not by the types
of obtained information.
This treatment of information classification has its obvious

superiorities and can greatly reduce the information exchange
when the number of agents is large and the formation is chang-
ing. Moreover, it can easily realize various kinds of complex and
even time-varying geometric patterns of formation. Furthermore,
this treatment also improves the robustness of proposed protocols
against data transmission failures. We will give several examples
to demonstrate these advantages.
As an important theoretical preparation for the development

of the main results, consensus theory is another interesting topic
in decentralized control (Martínez, Cortés, & Bullo, 2007; Olfati-
Saber, Fax, &Murray, 2007; Ren, Beard, & Atkins, 2007; Xiao, 2008;
Xiao & Wang, 2008a,b) and has been successfully applied in the
formation control (Lafferriere et al., 2005; Ren, 2006). Onemain re-
search issue in consensus problems is how to design effective con-
sensus protocols, which are distributed interaction rules among
agents and are aimed at ensuring that the concerned states of
agents converge to a common value. This paper discusses the de-
sign problem of finite-time consensus protocols. It is well known
that finite-time convergence systems possess the advantages of
higher control accuracy, better disturbance rejection and robust-
ness against uncertainties (Bhat & Bernstein, 2000; Haimo, 1986).
So far several kinds of finite-time consensus protocols have been
presented, see (Cortés, 2006; Sundaram&Hadjicostis, 2007;Wang
& Hong, 2008; Xiao & Wang, 2007). Compared with the existing
ones, our proposed protocols are in different forms and can guar-
antee the states of agents to reach consensus in finite time under
more relaxable conditions.
The contributions of this paper are twofold. First, this paper

presents a class of newnonlinear consensus protocols for state con-
sensus of multi-agent systems. These protocols have the form of a
continuous state feedback and bridge the gap between asymptot-
ical consensus protocols and discontinuous finite-time consensus
protocols (Cortés, 2006). Second, by applying the finite-time con-
vergence protocols, this paper develops a new finite-time forma-
tion framework for multi-agent systems with a large population
of members and considers time-invariant formation, time-varying
formation and trajectory tracking problem respectively.
An outline of this paper is as follows: in Section 2, some

preliminary notions in graph theory and a preliminary lemma are
assembled; in Section 3, the problem is formulated; in Section 4,
themain results are presented; in Section 5, numerical simulations
are given to illustrate the effectiveness of the theoretical results;
finally, concluding remarks are made in Section 6.
Notation: In this paper, In denotes the index set {1, 2, . . . , n};
IN is the N × N identity matrix; and ⊗ denotes the Kronecker
product. If b is a vector, then diag(b) denotes the diagonal matrix
with the ith diagonal entry being the ith element of vector b. Let
sig(r)α = sign(r)|r|α , where α > 0, r ∈ R and sign(·) is the sign
function. If r is a vector, sig(r)α denotes the vector with the same
dimensions as r , obtained by operating sig(·)α on each entry of r .

2. Preliminaries

Directed graph is used tomodel the interaction topology among
agents. A directed graph G consists of a vertex set V(G) = {vi : i ∈
In} and an edge set E(G) ⊂ {(vi, vj) : vi, vj ∈ V(G)}. Edges such as
(vi, vi) are called self-loops. If (vi, vj) ∈ V(G), vi is called the parent
vertex of vj. A path in directed graph G from vi1 to vik is a sequence
vi1 , vi2 , . . . , vik of finite vertices such that (vij , vij+1) ∈ E(G) for
j = 1, 2, . . . , k − 1. If i1 = ik, then this path is also called a
loop. Directed graph G is strongly connected if between every pair

of distinct vertices vi, vj, there exists a path that begins at vi and
ends at vj. Directed graph G is said to have a spanning tree if there
exists a vertex that is called the root which can be connected to any
others through paths.
A subgraph Gs of directed graph G is a directed graph such that

V(Gs) ⊂ V(G) and E(Gs) ⊂ E(G). If for any vi, vj ∈ V(Gs),
(vi, vj) ∈ E(Gs) ⇐⇒ (vi, vj) ∈ E(G), then Gs is called
an induced subgraph. In this case, Gs is also said to be induced
by V(Gs). A strongly connected component is an induced subgraph
that is maximal, subject to being strongly connected. Suppose
that all strongly connected components of G are G1, G2, . . . ,Gp.
We define another directed graph Gc related to G with vertex set
{G1,G2, . . . ,Gp}, satisfying the assumption that no self-loop exists
inGc and satisfying the property that for any i 6= j, (Gi,Gj) ∈ E(Gc)
if and only if there exist a vertex vi′ ∈ V(Gi) and a vertex vj′ ∈
V(Gj) such that (vi′ , vj′) ∈ E(G).
A weighted directed graph G(A) is a directed graph G with a

nonnegative weight matrix A = [aij] ∈ Rn×n, such that (vi, vj) ∈
E(G) ⇔ aji > 0. In this paper, it is assumed that the diagonal
entries of matrix A are all zeros. Let L(A) = [lij] ∈ Rn×n denote the
graph Laplacian of G(A), which is defined by

lij =


n∑

k=1,k6=i

aik, i = j

−aij, i 6= j.

We have

Lemma 1 (Olfati-Saber & Murray, 2004; Ren et al., 2007; Xiao,
2008). Graph Laplacian L(A) of G(A) has the following properties:

(1) if G(A) has a spanning tree, then eigenvalue 0 is algebraically
simple and all other eigenvalues are with positive real parts;

(2) if G(A) is strongly connected, then there exists a positive column
vector ω ∈ Rn such that ωTL(A) = 0.

3. Problem formulation

Suppose that the multi-agent system, studied in this section,
consists of n agents, e.g., vehicles, robots, etc., labeled 1–n. All these
agents interact with each other via local information transmission
and share a common state space RN , representing the positions of
agents, where N = 1, 2, or 3. Directed graph G with vertex set
V(G) = {vi, i ∈ In} is used to model the interaction topology.
Vertex vi represents agent i and edge (vi, vj) corresponds to an
available information channel from agent i to agent j. We further
assume that there exist no self-loops in G. The neighbors of agent
i are those agents whose information can be received by agent i.
Denote the associated index set by Ni. Clearly, Ni = {j : (vj, vi) ∈
E(G) and j 6= i}.
Let xi ∈ RN denote the state of agent i and suppose that the

dynamics of agent i is described by the following continuous-time
equation

ẋi = ui, (1)

where ui is a state feedback, called protocol, to be designed based
on the local information obtained by agent i from its neighbors. For
simplicity, let x = [xT1, x

T
2, . . . , x

T
n]
T.

Definition 2 (Finite-Time Formation). A formation (h, F) of n
agents consists of a time-dependent column vector h =

[hT1, . . . , h
T
m]
T
∈ RNm, m ≤ n, representing the global formation

information, and a time-dependent nonnegative matrix F =
[F Tm+1, . . . , F

T
n ]
T
∈ R(n−m)×n, representing the local formation

information, with the property that the entry sum of matrix Fi is 1
and the ith entry of Fi is zero, i = m+1, . . . , n, where h1, . . . , hm ∈
RN and Fm+1, . . . , Fn ∈ R1×n:
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(1) the n agents are in formation (h, F) at time t if there exists a
vector hc ∈ RN such that xi(t) = hi(t) + hc , i ∈ Im, and
xi(t) = (Fi(t)⊗ IN)x(t), i = m+ 1, . . . , n;

(2) the n agents converge asymptotically to formation (h, F) if
there exists a RN -valued function hc(t) such that xi(t) →
hi(t) + hc(t), i ∈ Im, and xi(t) → (Fi(t) ⊗ IN)x(t), i =
m+ 1, . . . , n, as t →∞;

(3) the n agents will be in formation (h, F) in finite time if there
exist time t∗ > 0 and a RN -valued function hc(t) such that
xi(t) = hi(t) + hc(t), i ∈ Im, and xi(t) = (Fi(t) ⊗ IN)x(t),
i = m+ 1, . . . , n, for all t ≥ t∗.

In the above three cases, the first m agents are called leaders and
the rest are called followers.

In formation (h, F), vector h defines the basic frame of the
expected formation formed by leaders and nonnegative matrix
F specifies the local position-restrictions of followers related to
their neighbors, in other words, matrix F determines the space
distribution of followers. Since each row entry sum of F equals
1, followers in the formation should lie in the convex region
covered by leaders. Column vector hc(t) decides the position of
the formation and may be dependent on initial states or may be
an external input, used to guide the group of agents to track an
anticipated trajectory.

4. Main results

4.1. Finite-time consensus

Before presenting the control strategies for finite-time forma-
tion, we study the simplest case of the formation (h, F), namely,
agreement over the location of agents or rendezvous problem. In
this case, h1(t) = h2(t) = · · · = hm(t) andm = n.
Given protocol ui, i ∈ In, ui or this multi-agent system solves

a consensus problem asymptotically if for any initial states, there
exists an asymptotically stable equilibrium x∗ ∈ RN such that
xi(t) → x∗ as t → ∞ for any i ∈ In (Olfati-Saber & Murray,
2004); ui or this multi-agent system solves a finite-time consensus
problem if for any initial states, there exist a finite time t∗ and an
asymptotically stable equilibrium x∗ ∈ RN such that xi(t) = x∗ for
all t ≥ t∗ and all i ∈ In.
Next, we provide a class of new nonlinear finite-time consensus

protocols:

ui = βsig

(∑
j∈Ni

Wij(xj − xi)

)α
+ γ

∑
j∈Ni

Wij(xj − xi), (2)

where 0 < α < 1, β > 0, γ ≥ 0, andWij > 0 are called weighting
factors (Ren & Beard, 2005).
Protocol (2) represents a class of protocolswith free parameters

α, β and γ . If β = 0, γ = 1, then the above protocol
becomes the linear protocol, which was studied by Olfati-Saber
and Murray (2004) and was proven to solve a consensus problem
asymptotically under appropriate conditions. If α = 0, β 6= 0,
the above protocol becomes discontinuous. This case is beyond
the scope of our research. However, it is worth mentioning that
discontinuous protocolswere studied by Cortés. Interested readers
can be referred to Cortés (2006).

Remark. Note that under the above protocol, the dynamics of each
dimension of position vectors is independent of others.We assume
that N = 1 without loss of generality. In this case, each agent be-
comes a single integrator. Networks of multiple integrators have
been studied bymany researchers and there still exist a large num-
ber of interesting but unsolved problems. Some researchers have
also investigatedmore realistic and complex agent dynamics in dif-
ferent frameworks (Johansson, Speranzon, Johansson, & Johansson,
2008; Keviczky & Johansson, 2008), which is one of our future re-
search topics.

Since function sig(·) is continuous, by Peano’s Existence Theo-
rem and Extension Theorem (Hartman, 1982), it can be obtained
that for any initial state, there exists at least one solution of differ-
ential equations (1) under protocol (2) on time interval [0,∞).
The following theorem characterizes the finite-time conver-

gence property of protocol (2):

Theorem 3. If the interaction topology G has a spanning tree, then
protocol (2) solves a finite-time consensus problem.

Proof. We first define a new matrix A = [aij] by

aij =
{
Wij, if j ∈ Ni
0, otherwise.

This theorem is proven through the following three steps.

Step 1: Suppose that G(A) is strongly connected.
By Lemma 1, there exists a positive vector ω = [ω1, ω2, . . . ,

ωn]
T
∈ Rn such that ωTL(A) = 0, where L(A) = [lij] denotes the

graph Laplacian ofG(A), defined in Section 2. Let yi =
∑n
j=1 aij(xj−

xi) and y = [y1, y2, . . . , yn]T. Then ω ⊥ y and

ẏ = −βL(A)sig(y)α − γ L(A)y.

Choose Lyapunov candidate

V1(t) =
n∑
i=1

ωi

(
β

1+ α
|yi|1+α +

γ

2
yi2
)
.

Obviously V1(t) ≥ 0 and

dV1(t)
dt
= −

(
βsig(y)α + γ y

)T
diag(ω)L(A)

(
βsig(y)α + γ y

)
.

Claim: Given initial state x(0), there exists K1 > 0 such that

dV1(t)
dt
≤ −K1V1(t)

2α
1+α .

By the above claim, V1(t) will reach zero in finite time t∗ =
(1+α)V1(0)

1−α
1+α

K1(1−α)
, which implies that y will be zero. Since y = −L(A)x

and rank(L(A)) = n − 1 (by Lemma 1), y = 0 implies that
x1 = x2 = · · · = xn and ẋ(t) = 0. Therefore this system solves
a finite-time consensus problem.
It is left to us to prove that the above claim holds.

Suppose that V1(t) 6= 0. Let ∆1(y) = −
dV1(t)
dt

V1(t)
2α
1+α
, let M =

1
2

(
diag(ω)L(A) + L(A)Tdiag(ω)

)
and let U = {ξ ∈ Rn : ξ Tξ =

1 and ξ = βsig(ζ )α + γ ζ for some ζ ⊥ ω}. ThenU is a bounded
closed set. Since function ξ TMξ is continuous with respect to ξ
and for any ξ ∈ U, ξ TMξ 6= 0 (by Lemma 1), we have that
minξ∈U ξ TMξ , denoted by k1, exists and is larger that zero. It
follows from ω ⊥ y that(
βsig(y)α + γ y

)T
M
(
βsig(y)α + γ y

)(
βsig(y)α + γ y

)T(
βsig(y)α + γ y

) ≥ k1.
Therefore,

∆1(y) ≥
k1
(
βsig(y)α + γ y

)T(
βsig(y)α + γ y

)
V1(t)

2α
1+α

≥

k1
n∑
i=1

(
βsig(yi)α + γ yi

)2
n∑
i=1

(
ωiβ
1+α

) 2α
1+α
|yi|2α +

n∑
i=1

(
ωiγ
2

) 2α
1+α |yi|

4α
1+α
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≥

k1β2
n∑
i=1
|yi|2α

n∑
i=1

(
ωiβ
1+α

) 2α
1+α
|yi|2α +

n∑
i=1

(
ωiγ
2

) 2α
1+α |yi|

4α
1+α

, ∆2(y).

The third inequality follows from the fact that yi and sig(yi)α are
with the same sign.
Let W = {ξ ∈ Rn : 1 ≤ ‖ξ‖∞ ≤ ‖L(A)‖i∞‖x(0)‖∞}, where

‖ · ‖i∞ is the induced matrix norm of maximum norm ‖ · ‖∞. We
first suppose W 6= ∅. Then it is compact, and for any ξ ∈ W ,
∆2(ξ) 6= 0. Thusminξ∈W ∆2(ξ), denoted by k2, exists, and is larger
than zero. Therefore, if y ∈ W , then42(y) ≥ k2. On the other hand,
if y 6∈ W or ifW = ∅, it follows from ‖y(t)‖∞ = ‖− L(A)x(t)‖∞ ≤
‖L(A)‖i∞‖x(t)‖∞ ≤ ‖L(A)‖i∞‖x(0)‖∞ that 0 < ‖y‖∞ < 1. In this
case,

∆2(y) >
k1β2

n∑
i=1
|yi|2α

2ω0
n∑
i=1
|yi|2α

=
k1β2

2ω0
,

where ω0 = max
{(

ωiβ
1+α

) 2α
1+α

,
(
ωiγ
2

) 2α
1+α , i ∈ In

}
.

Let K1 = min
{
k2,

k1β2

2ω0

}
. Then the claim holds.

Step 2: Next, we suppose that G(A) has a spanning tree, the asso-
ciated root vertex has no parent vertex, and the subgraph induced
by the other vertices is strongly connected.
Without loss of generality, assume that the root vertex is vn.

Then we get that an1 = an2 = · · · = ann = 0 and a1n, a2n, . . . ,
an−1,n are not all zeros. For simplicity, let b = [a1n, a2n, . . . ,
an−1,n]T, let A0 = [aij]1≤i,j≤n−1, let yi =

∑n
j=1 aij(zj − zi), i = 1,

2, . . . , n− 1, and let y0 = [y1, y2, . . . , yn−1]T.
Because the subgraph induced by v1, v2, . . . , vm is strongly con-

nected, i.e., G(A0) is strongly connected, by Lemma 1, there exists
a positive column vector ω0 = [w1, w2, . . . , wm]T ∈ Rm such that
ω0L(A0) = 0. Differentiate Lyapunov candidate

V2(t) =
m∑
i=1

ωi

(
β

1+ α
|yi|1+α +

γ

2
y2i

)
,

with respect to time and we have

dV2(t)
dt

=
(
βsig(y0)α + γ y0

)T
×

(
−diag(w0)L(A0)− diag(ω0)diag(b)

)
×
(
βsig(y0)α + γ y0

)
.

Given initial state x(0), with the same arguments as in the first
step, we can prove that there exists K2 > 0 such

dV2(t)
dt
≤ −K2V2(t)

2α
1+α ,

and thus V2(t)will reach zero in finite time. Therefore, in this case,
the system solves a finite-time consensus problem and the final
state is xn.
Step 3: Finally, by inductionweprove the correctness of the general
case, namely, the case when G(A) has a spanning tree.
Consider the directed graph Gc(A)with the strongly connected

components ofG(A) as its vertices.Gc(A) is defined in Section 2 and
by its definition, Gc(A) contains only one root vertex.
(1) The dynamics of agents corresponding to the vertex set of

the root of Gc(A) is not affected by others and by the conclusion of

the first step, the states of themwill reach consensus in finite time.
Denote their final state by x0.
(2) Consider the agents that constitute some strongly connected

component of the interaction topology G, but not the root vertex
of Gc(A). Obviously, their dynamics is only affected by the other
agents that can be connected to them by paths. Suppose that the
states of the ‘‘affecting’’ agents have already reached an agreement
andmaintain their current values as time evolves. Suppose that the
common state is also x0 and denote the index set of the ‘‘affecting’’
agents byL. Consider the dynamics of ‘‘affected’’ agent i. We have

ui = βsig
( ∑
j∈Ni\L

Wij(xj − xi)+
( ∑
j∈Ni∩L

Wij

)
(x0 − xi)

)α
+ γ

( ∑
j∈Ni\L

Wij(xj − xi)+
( ∑
j∈Ni∩L

Wij

)
(x0 − xi)

)
.

By the above expression, for the ‘‘affected’’ agents, the ‘‘affecting’’
agents, as a whole, can be seen as one virtual agent. By the con-
clusion obtained in the second step, the states of those ‘‘affected’’
agents will reach consensus in finite time and the final state of
them is x0.
(3) With the above conclusions and by the fact that Gc(A)

has no loop, we can employ the mathematical induction to de-
rive the conclusion that the system solves a finite-time consensus
problem. �

Remark. The convergence rate of the proposed algorithm is
closely related to the interaction topology and protocol parame-
ter α. Especially, in the bidirectional interaction case, i.e., when
AT = A, we can show that larger algebraic connectivity of G(A),
namely, the second smallest eigenvalue of L(A), will lead to shorter
convergence time and we also can shown that smaller α can lead
to a higher convergence rate when agents’ states differ a little from
each other, and larger α can lead to a higher convergence rate
when agents states differ a lot from each other. Moreover, by some
straightforward arguments, it can be shown that the system under
protocol (2) converges faster to some extent than that under the
linear counterpart of protocol (2).

We present the following corollary and omit the proof details
due to the limit of paper length.

Corollary 4. Consider system (1) under protocol (2). Given any initial
states, there exists a finite time, after which the states of all agents
will remain constant, and the state of each agent will reach a convex
combination of its neighbors’ states. More explicitly,

xi =

∑
j∈Ni
Wijxj∑

j∈Ni
Wij

, i ∈ In.

4.2. Time-invariant formation

In this subsection, we first assume that the expected formation
(h, F) is time-invariant andmake the following assumptions about
the multi-agent system:
(A1) the local interaction topology among the leaders has a

spanning tree and the leaders’ dynamics is not affected by the
followers;

(A2) the neighbors of follower i, i ∈ {m + 1,m + 2, . . . , n},
should include all such agent j that the jth entry of vector Fi
is nonzero; the followers adjust their positions based on the
information received from their neighbors;

(A3) leader i, i ∈ Im, can get the global formation information
hi and the local information xj − hj, j ∈ Ni, and send the
information xi − hi to other agents;
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(A4) follower i, i ∈ {m + 1,m + 2, . . . , n}, can get the local
formation information Fi and can obtain the relative positions
related to its neighbors.

Denote Fi = [f i1, f
i
2, . . . , f

i
n]. Based on the above assumption, the

presented control law is

ui =



βsig
(∑
j∈Ni

Wij
(
(xj − hj)− (xi − hi)

))α
+γ

∑
j∈Ni

Wij
(
(xj − hj)− (xi − hi)

)
,

i = 1, . . . ,m,

βsig
( n∑
j=1

f ij (xj − xi)
)α
+ γ

n∑
j=1

f ij (xj − xi),

i = m+ 1, . . . , n,

(3)

where weighting factors Wij > 0 and parameters 0 < α < 1,
β > 0, γ ≥ 0.

Corollary 5. Under protocol (3) and Assumption (A1)–(A4), the n
agents will be in time-invariant formation (h, F) in finite time, where
the first m agents are leaders and the rest are followers.

Proof. By observing Eq. (3) and by Theorem 3, xi − hi, i ∈ Im,
will reach consensus in finite time t∗1 . Let the consensus state be
hc . Then after time t∗1 , xi(t) = hi + h

c , i ∈ Im.
Consider the dynamics of followers after time t∗1 . Since the

positions of leaders are constant, by Corollary 4, there exists a finite
time t∗2 , after which the position of follower i is Fix.
To conclude, the n agents will be in formation (h, F) in finite

time. �

4.3. Time-varying formation

In many practical situations, such as to avoid obstacles, the
formation is required to be changing with time. In this case, we
assume that the studiedmulti-agent system satisfies the following
assumptions together with Assumptions (A1, A2):

(A3’) leader i, i ∈ Im, can get the global formation information
hi, ḣi and the local information xj − hj, j ∈ Ni, and send the
information xi − hi and ui to other agents;

(A4’) follower i, i ∈ {m + 1,m + 2, . . . , n}, can get the local
formation information Fi, Ḟi, and can obtain the relative
positions and control inputs of its neighbors.

The allowable time-varying formation control protocol is

ui =



ḣi + βsig
(∑
j∈Ni

Wij
(
(xj − hj)− (xi − hi)

))α
+ γ

∑
j∈Ni

Wij
(
(xj − hj)− (xi − hi)

)
,

i = 1, 2, . . . ,m,
n∑
j=1

(f ij uj + ḟ
i
j xj)+ βsig

( n∑
j=1

f ij (xj − xi)
)α

+ γ

n∑
j=1

f ij (xj − xi), i = m+ 1,m+ 2, . . . , n,

(4)

where weighting factorsWij > 0, parameters 0 < α < 1, β > 0,
γ ≥ 0.

Corollary 6. Suppose that h and F are continuous and piece-wise
differentiable. Under protocol (4) and Assumption (A1, A2, A3’, A4’),
the n agents will be in formation (h, F) in finite time.

Proof. Also by Theorem 3, xi − hi, i ∈ Im, will reach consensus in
finite time t∗1 . Denote the consensus state by h

c and then after time
t∗1 , xi(t) = hi(t)+ h

c .

Rewrite the second equation of protocol (4) as

d(xi −
n∑
j=1
f ij xj)

dt
= βsig

( n∑
j=1

f ij (xj − xi)
)α
+ γ

n∑
j=1

f ij (xj − xi),

i = m+ 1,m+ 2, . . . , n.

By Theorem 3, xi −
∑n
j=1 f

i
j xj, i = m+ 1,m+ 2, . . . , n, will reach

zero in finite time t∗2 . Denote t
∗
= max{t∗1 , t

∗

2 }, after which the n
agents are in formation (h, F). �

4.4. Trajectory tracking

We assume that hc , representing the expected trajectory of the
formation, satisfies the following differential equation

ḣc = f (t, hc), (5)

and the leaders of the studied system satisfy the following assump-
tion

(A5) some root agents in the local interaction topology among the
leaders can access the reference trajectory.

The same problem was studied in Ren (2007) in the development
of consensus theory. The available protocol in our framework is

ui =



ḣi + f (t, hc)

+βsig
(∑
j∈Ni

Wij
(
(xj − hj)− (xi − hi)

)
+W ci

(
hc − (xi − hi)

))α
+ γ

(∑
j∈Ni

Wij
(
(xj − hj)− (xi − hi)

)
+W ci

(
hc − (xi − hi)

))
, i = 1, 2, . . . ,m,

n∑
j=1

(f ij uj + ḟ
i
j xj)+ βsig

( n∑
j=1

f ij (xj − xi)
)α

+ γ

n∑
j=1

f ij (xj − xi), i = m+ 1,m+ 2, . . . , n,

(6)

where parameters 0 < α < 1, β > 0, γ ≥ 0, weighting factors
Wij > 0,W ci ≥ 0, andW

c
i > 0 if and only if leader i can access the

reference trajectory.

Corollary 7. Suppose that h, F and hc are continuous and piece-wise
differentiable. Under protocol (6) and Assumption (A1, A2, A3’, A4’,
A5), the n agents will be in formation (h, F) in finite time, tracking the
trajectory described by Eq. (5).

Proof. We only consider the dynamics of the leaders. By Theo-
rem 3, there exists a finite time, after which xi − hi − hc will be
equal to zero, namely, the leaders will form the formation frame h,
tracking the trajectory hc . �

5. Simulations

In the following examples, protocol parameters α = 1
3 , β =

γ = 1, weighting factors are all equal to 2, and the total number
of members is 30. Assume that the first 5 agents are leaders and
all the agents move on a plane, namely, N = 2. The anticipated
formation is a pentagon, specifically,
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hc

Fig. 1. The expected formation frame h.

Fig. 2. The interaction topology.

hi = ri(t)

cos
(
θ +

2iπ
5

)
sin
(
θ +

2iπ
5

)
 , i = 1, 2, . . . , 5;

f 5i+1i = f 5i+15i+2 = f
5i+2
5i+1 = f

5i+2
5i+3 = f

5i+4
5i+3 = f

5i+4
5(i+1)

= f 5(i+1)5i+4 = f
5(i+1)
imod5+1 = 0.5,

f 5i+35i+2 = f
5i+3
5i+4 = 0.45, f

5i+3
(i+2)mod5+1 = 0.1,

i = 1, 2, . . . , 5;
f ij = 0 in other cases.

The expected formation frame h is depicted in Fig. 1 and the inter-
action topology is depicted in Fig. 2.
Fig. 3 shows the simulation for time-invariant formation, where

the initial positions of agents are randomly generated in a given
bounded region, ri(t) ≡ 10 and θ = 0.
In the trajectory tracking formation, we assume

hc(t) =
[
t
20

]
, t ≥ 0,

which guides the whole group to move along a straight line. We
further assume that the formation frame h is also time-varying,
explicitly, θ = π t

30 . Fig. 4 shows the trajectories of agents in this
case.

Fig. 3. The trajectories of agents in the time-invariant formation.

Fig. 4. The trajectories of agents and formation errors ‖xi − hi − hc‖2 , i = 1,
2, . . . , 5, and ‖xi − (Fi ⊗ IN )x‖2 , i = 6, 7, . . . , 30, in the time-varying formation.

6. Conclusion

This paper presented a class of new finite-time consensus pro-
tocols and developed a new framework for formation control of
multi-agent systems with a large number of agents. In the frame-
work, the problems of time-invariant formation, time-varying
formation and trajectory tracking were discussed respectively.
Finally, the effectiveness of the proposed control strategies was il-
lustrated by simulations. Nevertheless, in our framework, there are
still someother problems that need to be addressed, such as the de-
sign of distributed protocols for leaders, which can lead the whole
group of agents to get across obstacles to their destination without
a reference trajectory, the design of obstacle avoidance strategies
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with bounded repulsive force, ensuring inter-agent collision avoid-
ance, and the study onmore realistic and complex agent dynamics.
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