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The problem of the stability analysis of neural networks with time-varying delay is considered in this
Letter. By constructing a new augmented Lyapunov functional which contains a triple-integral term, an
improved delay-dependent stability criterion is derived in terms of LMI using the free-weighting matrices
method. The rate-range of the delay is also considered in the derivation of the criterion. Numerical
examples are presented to illustrate the effectiveness of the proposed method.
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1. Introduction

Recently, stability of the delayed neural network has been extensively studied. The existing stability criteria can be classified into
two categories, namely, delay-independent ones [1–5] and delay-dependent ones [6–17]. Since delay-independent ones are usually more
conservative than delay-dependent ones especially when the delay is small, delay-dependent stability criteria for delayed neural networks
have received much attention.

In [6], the descriptor system approach was applied to derive the delay-dependent exponential stability conditions for delayed neural
networks. An improved stability criterion was proposed in [7] by constructing a new Lyapunov functional and using the S-procedure.
Using the free-weighting matrices method, a new delay-dependent stability criterion for neural networks with time-varying delay is
derived in [8]. In the above papers, some useful terms were ignored when estimating the upper bound of the derivative of the Lyapunov
functional. So some less conservative stability criteria were proposed in [9] by considering those useful terms and using the free-weighting
matrices method. The stability of neural networks with time-varying interval delay were considered in [18] where the relationship between
the time-varying delay and its lower and upper bound was taken into account and an elegant result was derived. However, there still exists
room for further improvements.

It can be seen that the Lyapunov functional introduced in [18] only contains some integral terms, for example
∫ t

t−h zT (s)Q z(s)ds, and

double-integral terms, for example
∫ 0
−h

∫ t
t+θ

żT (s)Z ż(s)ds dθ . If a triple-integral term is introduced in the Lyapunov functional, what results
can be obtained? This idea motivates this study. In addition, the lower bound of the delay-derivative was not considered in the above
publications. If information on the lower bound of the delay-derivative is used in the derivation of stability criterion, a less conservative
result may be obtained.

✩ This work is supported by National Science Foundation of China under Grant 60528002 and by the Beijing Education Committee Cooperation Building Foundation Project.

* Corresponding author at: Faculty of Advanced Technology, University of Glamorgan, Pontypridd CF37 1DL, UK. Tel.: +44 1443 482817; fax: +44 1443 482514.
E-mail addresses: jsun@glam.ac.uk (J. Sun), gpliu@glam.ac.uk (G.P. Liu), chenjie@bit.edu.cn (J. Chen), drees@glam.ac.uk (D. Rees).
0375-9601/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2008.11.048

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:jsun@glam.ac.uk
mailto:gpliu@glam.ac.uk
mailto:chenjie@bit.edu.cn
mailto:drees@glam.ac.uk
http://dx.doi.org/10.1016/j.physleta.2008.11.048


J. Sun et al. / Physics Letters A 373 (2009) 342–348 343
2. Problem formulation

Consider the following delayed neural network:

ẋ(t) = −Cx(t) + Ag
(
x(t)

) + A1 g
(
x
(
t − τ (t)

)) + u (1)

where x(·) = [x1(·) x2(·) · · · xn(·)]T is the neuron state vector, g(x(·)) = [g1(x1(·)) g2(x2(·)) · · · gn(xn(·))]T is the neuron activation
function, and u = [u1 u2 · · · un]T is a constant input vector. C = diag{c1, c2, . . . , cn} with ci > 0, i = 1,2, . . . ,n, is a diagonal matrix
representing self-feedback term, A is the connection weight matrix and A1 is the delayed connection weight matrix. The delay τ (t) is a
time-varying differentiable function satisfying

0 � τ (t) � h (2)

and

μ1 � τ̇ (t) � μ2 < 1 (3)

where h � 0, μ1 and μ2 are constants. It is assumed that each neuron activation function, gi(·), i = 1,2, . . . ,n, is nondecreasing, bounded
and satisfying the following condition:

0 � gi(x) − gi(y)

x − y
� mi ∀x, y ∈ R, x �= y, i = 1,2, . . . ,n, (4)

where mi , i = 1,2, . . . ,n, are positive constants.
Assuming that x∗ = [x∗

1 x∗
2 · · · x∗

n] is the equilibrium point of (1) whose uniqueness has been given in [17] and using the transformation
z(·) = x(·) − x∗ , (1) can be converted to the following error system:

ż(t) = −C z(t) + A f
(
z(t)

) + A1 f
(
z
(
t − τ (t)

))
(5)

where z(·) = [z1(·) z2(·) · · · zn(·)]T is the state vector, f (z(·)) = [ f1(z1(·)) f2(z2(·)) · · · fn(zn(·))]T , and f i(zi(·)) = gi(zi(·) + x∗
i ) − gi(x∗

i ),
i = 1,2, . . . ,n. According to (4), one can obtain that the functions f i(·), i = 1,2, . . . ,n, satisfy the following condition:

0 � f i(zi)

zi
� mi, f i(0) = 0, ∀zi �= 0, i = 1,2, . . . ,n, (6)

which is equivalent to

f i(zi)
[

f i(zi) − mi zi
]
� 0, f i(0) = 0, i = 1,2, . . . ,n. (7)

3. Main results

In this section, a new augmented Lyapunov functional is constructed and a less conservative delay-dependent stability criterion is
obtained.

Theorem 1. For given scalars h � 0, μ1 and μ2 , system (5) is asymptotically stable for any time-varying delay satisfying (2) and (3) if there exist
matrices Rl = RT

l > 0, Sl = S T
l > 0, l = 1,2, U = U T > 0, P = P T = [Pij]4×4 > 0, Q = Q T = [Q ij]3×3 > 0, X = X T = [Xij]7×7 � 0, Λ =

diag{λ1, λ2, . . . , λn} � 0, Wk = diag{W1k, W2k, . . . , Wnk} � 0, k = 1,2, and any matrices L, N, and H with appropriate dimensions such that the
following LMIs holds:⎡

⎣ Ξ AT
c Y 1

2 h2 H

Y Ac −Y 0
1
2 h2 H T 0 − 1

2 h2U

⎤
⎦ < 0, (8)

Π1 =
⎡
⎣ X Γ + H L

Γ T + H T S1 0

LT 0 S2

⎤
⎦ � 0, (9)

Π2 =
⎡
⎣ X Γ + H N

Γ T + H T S1 0

N T 0 S2

⎤
⎦ � 0 (10)

where

Ξ = [Ξi j]7×7,

Ξ11 = −P11C − C T P11 − Q 12C − C T Q T
12 + P14 + P T

14 + Q 11 + R1 + hS1 + L1 + LT
1 + hH1 + hH T

1 + h X11,

Ξ12 = −L1 + LT
2 + N1 − C T P12 + P T

24 + hH T
2 + h X12,

Ξ13 = P12 + LT
3 + hH T

3 + h X13,

Ξ14 = −C T P13 + P T
34 + LT

4 − P14 − N1 + hH T
4 + h X14,

Ξ15 = P13 + LT
5 + hH T

5 + h X15,

Ξ16 = P11 A + Q 12 A + Q 13 − C T Q 23 + LT
6 + hH T

6 − C T Λ + MW1 + h X16,
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Ξ17 = P11 A1 + Q 12 A1 + LT
7 + hH T

7 + h X17,

Ξ22 = −(1 − μ2)Q 11 − L2 − LT
2 + N2 + N T

2 + h X22,

Ξ23 = P22 − Q 12 − LT
3 + N T

3 + h X23,

Ξ24 = −L4T + N T
4 − P24 − N2 + h X24,

Ξ25 = −LT
5 + N T

5 + P23 + h X25,

Ξ26 = −LT
6 + N T

6 + P T
12 A + h X26,

Ξ27 = −LT
7 + N T

7 + P T
12 A1 − (1 − μ2)Q 13 + MW2 + h X27,

Ξ33 = −Q 22/(1 − μ1) + h X33,

Ξ34 = P23 − N3 + h X34,

Ξ35 = h X35,

Ξ36 = h X36,

Ξ37 = −Q 23 + h X37,

Ξ44 = −P34 − P T
34 − R1 − N4 − N T

4 + h X44,

Ξ45 = P33 − N T
5 + h X45,

Ξ46 = −N T
6 + P T

13 A + h X46,

Ξ47 = −N T
7 + P T

13 A1 + h X47,

Ξ55 = −R2 + h X55,

Ξ56 = h X56,

Ξ57 = h X57,

Ξ66 = ΛA + AT Λ + AT Q 23 + Q T
23 A + Q 33 − 2W1 + h X66,

Ξ67 = ΛA1 + Q T
23 A1 + h X67,

Ξ77 = −(1 − μ2)Q 33 − 2W2 + h X77,

Y = Q 22 + R2 + hS2 + h2

2
U ,

Ac = [−C 0 0 0 A A1 ],
M = diag{m1,m2, . . . ,mn},
Γ T = [

P T
14C − P44 0 −P T

24 P44 −P T
34 −P T

14 A −P T
14 A1

]
.

Proof. Construct the following Lyapunov functional

V
(
z(t)

) = V 1
(
z(t)

) + V 2
(
z(t)

) + V 3
(
z(t)

) + V 4
(
z(t)

) + V 5
(
z(t)

)
(11)

with

V 1
(
z(t)

) = ζ T (t)Pζ(t) + 2
n∑

i=1

λi

zi∫
0

f i(s)ds,

V 2
(
z(t)

) =
t∫

t−τ (t)

ξ T (s)Q ξ(s)ds,

V 3
(
z(t)

) =
t∫

t−h

zT (s)R1z(s)ds +
t∫

t−h

żT (s)R2 ż(s)ds,

V 4
(
z(t)

) =
0∫

−h

t∫
t+θ

zT (s)S1z(s)ds dθ +
0∫

−h

t∫
t+θ

żT (s)S2 ż(s)ds dθ,

V 5
(
z(t)

) =
0∫

−h

0∫
θ

t∫
t+λ

żT (s)U ż(s)ds dλdθ

where ζ(t) = col{z(t), z(t − τ (t)), z(t − h),
∫ t

t−h z(s)ds}, ξ(s) = col{z(s), ż(s), f (z(s))}. Taking the derivative of V (z(t)) along the trajectories
of system (5) yields
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V̇ 1
(
z(t)

) = 2ζ T (t)P ζ̇ (t) + 2
n∑

i=1

λi f i
(
zi(t)

)
żi(t) = 2ζ T (t)P ζ̇ (t) + 2 f T (

z(t)
)
Λż(t), (12)

V̇ 2
(
z(t)

) = ξ T (t)Q ξ(t) − (
1 − τ̇ (t)

)
ξ T (

t − τ (t)
)

Q ξ
(
t − τ (t)

)
, (13)

V̇ 3
(
z(t)

) = zT (t)R1z(t) − zT (t − h)R1z(t − h) + żT (t)R2 ż(t) − żT (t − h)R2 ż(t − h), (14)

V̇ 4
(
z(t)

) = hzT (t)S1z(t) −
t∫

t−h

zT (s)S1z(s)ds + hżT (t)S2 ż(t) −
t∫

t−h

żT (s)S2 ż(s)ds

= hzT (t)S1z(t) −
t∫

t−τ (t)

zT (s)S1z(s)ds −
t−τ (t)∫
t−h

zT (s)S1z(s)ds + hżT (t)S2 ż(t) −
t∫

t−τ (t)

żT (s)S2 ż(s)ds −
t−τ (t)∫
t−h

żT (s)S2 ż(s)ds, (15)

V̇ 5
(
z(t)

) = 1

2
h2 żT (t)U ż(t) −

0∫
−h

t∫
t+θ

żT (s)U ż(s)ds dθ. (16)

In addition, from (7) one can obtained that

f i
(
zi(t)

)[
f i
(
zi(t)

) − mi zi(t)
]
� 0, i = 1,2, . . . ,n, (17)

f i
(
zi

(
t − τ (t)

))[
f i
(
zi

(
t − τ (t)

)) − mi zi
(
t − τ (t)

)]
� 0, i = 1,2, . . . ,n. (18)

It is clear that the following inequality holds for any W i = diag{W1i, W2i, . . . , Wni} � 0, i = 1,2.

0 � −2
n∑

i=1

W i1 f i
(
zi(t)

)[
f i
(
zi(t)

) − mi zi(t)
] − 2

n∑
i=1

W i2 f i
(
zi

(
t − τ (t)

))[
f i
(
zi

(
t − τ (t)

)) − mi zi
(
t − τ (t)

)]
= 2zT (t)MW1 f

(
z(t)

) − 2 f T (
z(t)

)
W1 f

(
z(t)

) + 2zT (
t − τ (t)

)
MW2 f

(
z
(
t − τ (t)

)) − 2 f T (
z
(
t − τ (t)

))
W2 f

(
z
(
t − τ (t)

))
. (19)

Similar to [9], the following equations hold:

Δ1 := 2θ T (t)L

[
z(t) − z

(
t − τ (t)

) −
t∫

t−τ (t)

ż(s)ds

]
= 0, (20)

Δ2 := 2θ T (t)N

[
z
(
t − τ (t)

) − z(t − h) −
t−τ (t)∫
t−h

ż(s)ds

]
= 0, (21)

Δ3 := 2θ T (t)H

[
hz(t) −

t∫
t−τ (t)

z(s)ds −
t−τ (t)∫
t−h

z(s)ds −
0∫

−h

t∫
t+θ

ż(s)ds dθ

]
= 0, (22)

Δ4 = hθ T (t)Xθ(t) −
t∫

t−τ (t)

θ T (t)Xθ(t)ds −
t−τ (t)∫
t−h

θ T (t)Xθ(t)ds = 0 (23)

where θ(t) = col{z(t), z(t − τ (t)), ż(t − τ (t))(1 − τ̇ (t)), z(t − h), ż(t − h), f (z(t)), f (z(t − τ (t)))} and

−2θ T (t)H

0∫
−h

t∫
t+θ

ż(s)ds dθ � 1

2
h2θ T (t)HU−1 H T θ(t) +

0∫
−h

t∫
t+θ

żT (s)U ż(s)ds dθ. (24)

From (12)–(16) and (20)–(23), it is easy to obtain that

V̇
(
z(t)

) =
5∑

i=1

V̇ i
(
z(t)

) +
4∑

j=1

Δ j . (25)

Adding both sides of (19) into both sides of (25) and using (24) yield

V̇
(
z(t)

)
� θ T (t)

[
Ξ̂ + AT

c Y Ac + 1

2
h2 HU−1 H T

]
θ(t) −

t∫
t−τ (t)

θ T (t, s)Π1θ(t, s)ds −
t−τ (t)∫
t−h

θ T (t, s)Π2θ(t, s)ds (26)

where θ T (t, s) = [θ T (t) zT (s) żT (s)], Ξ̂ = [Ξ̂i j]7×7 with Ξ̂22 = −(1 − τ̇ (t))Q 11 − M2 − MT
2 + N2 + N T

2 + h X22, Ξ̂27 = −LT
7 + N T

7 + P T
12 A1 −

(1 − τ̇ (t))Q 13 + MW2 + h X27, Ξ̂33 = Q 22/(1 − τ (t)) + h X33, Ξ̂77 = −(1 − τ̇ (t))Q 33 − 2W2 + h X77, and the others Ξ̂i j are the same as Ξi j .
From (3), it is easy to see that Ξ̂ � Ξ . So, if Ξ + AT

c Y Ac + 1
2 h2 HU−1 H T < 0, Π1 � 0 and Π2 � 0, V̇ (z(t)) < −ε‖z(t)‖2 for a sufficiently

small ε > 0 such that system (5) is asymptotically stable. By Schur complements, Ξ + AT
c Y Ac + 1

2 h2 HU−1 H T < 0 is equivalent to (8). The
proof is completed. �
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Remark 2. Compared with the existing augmented Lyapunov functional [19], the proposed one contains a triple-integral term. It can be
seen that the augmented vector ζ(t) in the proposed Lyapunov functional (11) contains an integral term

∫ t
t−h x(s)ds. Both this term and

the triple-integral term play important roles in the reduction in conservativeness. Through some numerical examples, it can be found
that if

∫ t
t−h x(s)ds is not introduced in the augmented vector, the introduction of the triple-integral term does not contribute to a further

reduction in conservativeness. On the other hand, if only the integral term
∫ t

t−h x(s)ds is introduced in the augmented vector with the
triple-integral term omitted in the Lyapunov functional (11), then this Lyapunov functional does not lead to a less conservative result.

Remark 3. It is easy to see that the derivative of ζ T (t)Pζ(t) has some terms containing 1 − τ̇ (t). In order to estimate it, a bounding
technique is used in [19] (see Eq. (22)), which introduces some conservativeness. However, the method proposed in this Letter is much
different. In the definition of θ(t), it is żT (t − τ (t))(1 − τ̇ (t)) but not żT (t − τ (t)) that is introduced. And this definition of θ(t) can absorb
some 1 − τ̇ (t), so Ξ̂ contains less 1 − τ̇ (t), which makes the estimation of the upper bound of the derivative of the Lyapunov functional
much easier.

Remark 4. Clearly, the stability condition in Theorem 1 is delay-dependent. Furthermore, it is also dependent on both the upper bound
and the lower bound of the delay-derivative. And, there is no additional restriction on μ1. However, the delay-derivative in [19] is restrict
to |τ̇ (t)| � μ and μ < 1.

Before finishing this section, it should be pointed out that the proposed method can also be used to develop a delay-independent
stability criterion. If letting S1 = ε1 I , S2 = ε2 I , U = ε3 I and P44 = ε4 I , where εi , i = 1, . . . ,4, are sufficiently small positive scalars, and
setting P j4 = 0, j = 1, . . . ,3, in the Lyapunov functional (11), the following delay-independent result is obtained.

Corollary 5. For given scalars μ1 and μ2 and any h � 0, system (5) is asymptotically stable for any time-varying delay satisfying (2) and
(3) if there exist matrices P = P T = [Pij]3×3 > 0, R1 > 0, R2 > 0 and Q = Q T = [Q ij]3×3 > 0, Λ = diag{λ1, λ2, . . . , λn} � 0, and W i =
diag{W1i, W2i, . . . , Wni} � 0, i = 1,2, such that the following LMI holds⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ11 −C T P12 P12 −C T P13 P13 Σ16 Σ17 −C T Y

∗ −(1 − μ2)Q 11 P22 − Q 12 0 P23 P T
12 A Σ27 0

∗ ∗ − Q 22
1−μ1

P23 0 0 −Q 23 0

∗ ∗ ∗ −R1 P33 P T
13 A P T

13 A1 0

∗ ∗ ∗ ∗ −R2 0 0 0

∗ ∗ ∗ ∗ ∗ Σ66 Σ67 AT Y

∗ ∗ ∗ ∗ ∗ ∗ Σ77 AT
1 Y

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (27)

where

Σ11 = −P11C − C T P11 + Q 11 − Q 12C − C T Q T
12,

Σ16 = P11 A + Q 12 A + Q 13 − C T Q 23 − C T Λ + MW1,

Σ17 = P11 A1 + Q 12 A1,

Σ27 = P T
12 A1 − (1 − μ2)Q 13 + MW2,

Σ66 = ΛA + AT Λ + AT Q 23 + Q T
23 A + Q 33 − 2W1,

Σ67 = ΛA1 + Q T
23 A1,

Σ77 = −(1 − μ2)Q 33 − 2W2,

Y = Q 22 + R2,

M = diag{m1,m2, . . . ,mn}.

Remark 6. Clearly, Corollary 5 is delay-independent. However, it is dependent on the rate-range of the delay, that is, it is dependent on
both the upper bound and the lower bound of the delay-derivative.

4. Numerical examples

In this section, two numerical examples are presented to show the less conservativeness of the proposed methods.

Example 1. Consider the following delayed neural network with [17]

C = diag{1.2769,0.6231,0.9230,0.4480}, A =
⎡
⎢⎣

−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785

⎤
⎥⎦ ,
−0.1311 0.3253 −0.9634 −0.5015
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Table 1
Upper bounds of h for different μ.

μ 0.1 0.5 0.9

Hua et al. [10] 3.2775 2.1502 1.3164
He et al. [9] 3.2793 2.2245 1.5847
He et al. [18] 3.3039 2.5376 2.0853
Theorem 1 3.7008 3.1245 2.5979

Table 2
Upper bounds of h for different μ.

μ 0.4 0.45 0.5 0.55

He et al. [18] 3.9972 3.2760 3.0594 2.9814
Case 1 4.2093 3.4515 3.2307 3.1668
Case 2 4.2093 3.4515 3.2307 3.1668
Case 3 4.2093 3.4515 3.2307 3.1668
Theorem 1 4.3814 3.6008 3.3377 3.2350

A1 =
⎡
⎢⎣

0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775

⎤
⎥⎦ ,

m1 = 0.1137, m2 = 0.1279, m3 = 0.7994, m4 = 0.2368.

It is assumed that |τ̇ (t)| � μ. The corresponding upper bounds of h for various μ calculated by Theorem 1 are listed in Table 1 compared
with those in [9,10,18]. It can be seen that our results are least conservative. This example has illustrated that the new method proposed
in this Letter can lead to less conservative results.

Example 2. Consider the following delayed neural network with

C =
[

1.5 0
0 0.7

]
, A =

[
0.0503 0.0454
0.0987 0.2075

]
, A1 =

[
0.2381 0.9320
0.0388 0.5062

]
,

m1 = 0.3, m2 = 0.8.

It is assumed that |τ̇ (t)| � μ. This example is presented to illustrate the statements in Remark 2. If
∫ t

t−h x(s)ds is not introduced in the

augmented vector ζ(t) but only the triple-integral term,
∫ 0
−h

∫ 0
θ

∫ t
t+λ

żT (s)U ż(s)ds dλdθ , is introduced in the Lyapunov functional, a result
can be obtained form Theorem 1 directly by setting Pi4 = 0, i = 1,2,3,4, and is referred to as Case 1. Similarly, if the triple-integral term
is not introduced in the Lyapunov functional but only

∫ t
t−h x(s)ds is introduced in the augmented vector, another result can be obtained by

setting H = 0 and U = ε I with ε > 0 being a sufficiently small scalar and is referred to as Case 2. If the
∫ t

t−h x(s)ds and the triple-integral
term are all removed from the Lyapunov functional, another result can be obtained. We call this result Case 3. These three results are all
special cases of Theorem 1. Using these three results and Theorem 1, the upper bounds of h for various μ are listed in Table 2 compared
with results in [18].

From Table 2, it can be seen that Cases 1, 2 and 3 yield the same results but more conservative than those obtained by Theorem 1. This
fact illustrates the statements in Remark 2, that is, the

∫ t
t−h x(s)ds and the triple-integral terms should co-exist in the Lyapunov functional.

Without either, the other one may not contribute to the further reduction of the conservativeness. Furthermore, it can seen that results
obtained by Cases 1, 2 and 3 are still less conservative than those in [18]. This is mainly because the information on the lower bound of
the delay-derivative is used in our results.

5. Conclusion

In this Letter, the stability problem of neural networks with time-varying delay has been investigated. A new augmented Lyapunov
functional has been introduced and a new method of estimating the upper bound of the derivative of the Lyapunov functional has also
been proposed. New stability criteria have been developed. Numerical examples have illustrated the effectiveness of the proposed method.

It should be noted that results in this Letter may involve more computational complexity especially when the dimension of the neural
network is large. However, the proposed results may be easily checked due to the availability of high speed processor. How to reduce the
number of decision variables may be an important issue for further study.
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