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Abstract: The adaptive robust control (ARC) for DC motors subjected to parametric uncertainties, disturbances and input
saturation is considered in this study. To achieve high performance while keeping the control authority within saturation limit,
a saturated ARC scheme is proposed. In this scheme, a variable-gain saturation function is introduced for the virtual control
law, so that the amplitude of the virtual control and its derivative decrease when the control input approaches to the
prescribed bound. Consequently, the virtual control and its derivative will not be excessively large, which is crucial for
stabilising the system with a bounded input. We prove that the proposed controller cannot only assure global stability, but
also provide desirable control performance, that is, the tracking error can be steered to the neighbourhood of the origin in
finite time. Moreover, asymptotic tracking can be achieved in the presence of parametric uncertainties only. Finally,
simulation results illustrate the effectiveness of the proposed controller.
1 Introduction

Input saturation is one of the most common non-linearities in
physical systems, which can be found in almost all actuators.
If the system operates with a control input beyond the
saturation limit, deteriorated control performance appears,
and even instability of the close loop occurs [1, 2].
Therefore the control problem of plants with saturation
attracts much attention and research articles in the last
decades contain a significant amount of new knowledge [3].
In [4], the controller design of a linear stable plant with
input saturation is directly solved by a linear matrix
inequality optimisation approach. In [5], composite
quadratic Lyapunov function is utilised to construct the
control law for linear plants subjected to input constraint. In
[6], a novel saturated control structure was proposed to
ensure the globally asymptotic stability using a set of linear
coordinate transformations and multiple saturation-type
functions.

However, all the above results are based on the assumption
that the plants are linear and exactly known, which is not
satisfied in many applications. Taking servo systems for
instance, the friction non-linearity, disturbance and
parametric uncertainties influence the control performance
[7]. It is necessary to consider these uncertainties when
coping with the actuator saturation problem.

In order to improve the control performance of the uncertain
non-linear systems, an adaptive robust control (ARC) method
was proposed by Yao [8, 9]. It is performance-oriented and has
strong performance in robustness [10–12]. However, in the
traditional ARC the input saturation is rarely considered.
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Although the projection-type adaptation of ARC can
alleviate integral windup problem caused by parameter
adaptations [13], the previous ARC strategy [8, 9] does not
guarantee global stability when the actuator saturation exists.

To solve this problem, Gong and Yao [14] combined the
nested saturated control design [6] and the ARC approach
to achieve both global stability and high performance for
the plants subjected to the matched parametric uncertainty
and disturbance. Nevertheless, this method is based on a
transformed state-space model, in which the model
uncertainties have direct influence on every state. Hence,
the resulting controller is usually conservatively designed to
handle the enlarged model uncertainties. In [15, 16], Hong
and Yao also investigated the ARC design for linear motors
with input saturation. They introduced saturation functions
to construct the (virtual) control law in each recursive
backstepping procedure, so that the output of the adaptive
robust controller is bounded. However, in this method since
the gain of virtual control is fixed, the derivative of virtual
control may become excessively large, then a large control
input is required to dominate the derivative of virtual
control. In order to assure the stability of the close loop
while keeping the control input within the limit, the gain of
virtual control is constrained, and then the tracking error for
virtual control, that is, |z2| cannot be monotonically
decreasing. That means the final control law may be
conservative.

In this paper, we propose a saturated adaptive robust
control (SARC) scheme to achieve high performance while
considering the input saturation of the plant. To make the
saturated controller less conservative, a variable-gain
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saturation function in the virtual control law is introduced.
Therefore the magnitude of virtual control and its derivative
decrease when the control input gets close to the prescribed
bound and the control saturation is avoided effectively.
Moreover, comparing with the controller proposed in [15],
the design procedure of our controller is more flexible,
which leads to less conservative performance.

This paper is organised as follows. The problem
description is presented in Section 2. The design procedure
of the proposed SARC is provided in Section 3. The
stability proof and performance analysis are given in
Section 4. Simulations are described and analysed in
Section 5 and conclusions are outlined in Section 6.

2 Dynamic models and problem
formulations

2.1 Dynamic model of servo mechanisms

The control of DC motors subjected to input saturation are
investigated. The mechanical dynamics of a servo
mechanism can be described by

J q̈ + Tf + Tl + Tdis = Tm (1)

where J is the inertial sum of load and armature; q is the motor
output angle; Tm is the electromagnetic torque; Tf is the
friction torque; Tl is the unknown payload; Tdis is the torque
disturbance. In this paper, a simple friction model described
by the Coulomb plus viscous model [17] is considered.

Tf (q̇) = Tcsgn(q̇) + Bq̇ (2)

In this equation, Tc is the level of Coulomb friction torque, B
is the viscous friction coefficient and the signum function
sgn(†) is defined by

sgn(†) =
1, † . 0
0, † = 0
−1, † , 0

⎧⎨
⎩

From (1) and (2), one has

J q̈ + Bq̇ = Tm − Tc sgn(q̇) − Tl − Tdiss (3)

The electromagnetic torque Tm in (1) is given by

Tm = KT i (4)

where KT is the force constant. The current dynamics of a
servo mechanism can be modelled as

Ldi/dt + iR + KEq̇ = sat(u, Mu) (5)

In (5), R and L are the resistance and induction of the
armature, respectively; i is the motor current amplitude; KE

is the electromotive force coefficient; u is the input voltage;
Mu is the amplitude boundary of the input voltage; sat is the
saturation function, which is defined as

sat(u, Mu) =
Mu u . Mu

u −Mu ≤ u ≤ Mu

−Mu u , −Mu

⎧⎨
⎩ (6)

In general, the electrical constant L/R is small (compared to
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the mechanical time constant J/B), therefore from (3)–(5),
we know that the electrical transients decay quite rapidly
and Ldi/dt is very close to zero [18]. Thus, the dynamics of
a servo mechanism can be simplified as [19]

q̈ = K1

J
sat(u, Mu) − K2

J
q̇ − Tc

J
sgn(q̇) − 1

J
(Tl + Tdis) (7)

where

K1 = KT/R, K2 = (KTKE + BR)/R (8)

As seen, the DC motor model (7) is second order with non-
linearity and disturbance.

Herein, we use a continuous function Sf to approximate the
discontinuous function sgn(x2) [20]. The angle q is regarded
as the system output y and the system state vector is defined
by [x1, x2]T = [q, q̇]T. Define Tn as the mean value of
Tl + Tdis and D as the lumped disturbance, that is,
D ¼ (Tl + Tdis 2 Tn + Tc(sgn(x2) × Sf))/J. Then, from (7),
the following state-space form of the DC motor model can
be obtained.

ẋ1 = x2

ẋ2 = C · �u − u1x2 − u2Sf + u3 + D

y = x1

�u = sat (u, Mu)

⎧⎪⎪⎨
⎪⎪⎩ (9)

where C and uj( j ¼ 1, 2, 3) are defined as follows

D = d

J
(rad/s2), C = K1

J
((rad/s2)/v)

u1 = K2

J
(1/s), u2 = Tc

J
((rad/s2)/(N · m)),

u3=
Tn

J
(rad/s2)

(10)

2.2 Assumptions and problem formulations

For simplicity, the following notations will be used: †j for the
jth component of the vector †, †̂ for the estimate of †, †min

for the minimum value of †, and †max for the maximum
value of †. The operation ≤ for two vectors is performed in
terms of the corresponding elements of the vectors.

Assumption 1: The parameter C in (9) is known and the extent
of the unknown parameter uj, j ¼ 1, 2, 3 is known, that is,
0 , ujmin ≤ uj ≤ ujmax, where ujmin and ujmax are known.

Remark 1: This assumption is reasonable and of practical
significance, because the two parameters (K1 and J ) are
more unlikely to change during a single operation in
comparison with other parameters and can normally be
estimated accurately online [15]. Thus, we assume that the
parameter C in (9) is constant and known according to (10).
In addition, to determine the bounds ujmin and ujmax, the
rough value of uj can be obtained first from the product
specifications or the off-line system identification. Then the
lower and upper bounds can be set as less and more than
10 or 50% of this value, respectively.

Assumption 2: The disturbance D is bounded, that is, |D| ≤ d,
where d is some positive constant.
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With the dynamic models and assumptions above, the
control problem of this paper can be stated as follows:
Given the desired motion trajectory x1d(t) which is
bounded with bounded derivatives up to the second
order, the objective is to synthesise a control input u
such that the output y ¼ x1 tracks x1d(t) as close as
possible, while the input u remains in the prescribed bound
[2Mu, Mu].

3 ARC design for servo mechanisms with
input saturation

To solve the aforementioned control problem, a SARC
method is proposed. The concrete design procedure is given
as follows:

Step 1: Define a variable z1 as

z1 = x1 − x1d (11)

Here, z1 represents the output tracking error. From (9), we
know ż1 = x2 − ẋ1d. In this step, we need to synthesise a
virtual control law a1 satisfying these conditions: (i) The
tracking error z1 converges to zero globally when x2 ¼ a1.
(ii) a1 should be bounded, which is necessary for
the boundedness of the control input u. In view of
the above two conditions, we design the virtual control law
a1 as

a1 = ẋ1d − s1(z1, z2) (12)

where z2 is given by

z2 = x2 − a1 (13)

and s1(z1, z2) is

s1(z1, z2) = s11(z1) · s12(z2) (14)

where s11 and s12 are smooth functions with available first-
order derivatives defined as follows:

1. The definition of s11 is

s11(z1) =

−M1 z1 , −L12

0.5a(z1 + L12)2 − M1 −L12 ≤ z1 , −L11

k1z1 −L11 ≤ z1 , L11

−0.5a(L12 − z1)2 + M1 L11 ≤ z1 , L12

M1 L12 ≤ z1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(15)

where L12 ¼ (M1/k1) + (k1/2a) and L11 ¼ L12 2 (k1/a). In
(15), M1, a, k1 are positive design parameters satisfying

2M1a . k2
1 (16)

which yields L11 . 0, and then s11(z1) is well defined. From
(15), it is easy to check that s11(z1) is a smooth saturated
function. Furthermore, it has a continuous first-order
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derivative below

ds11(z1)

dz1

=

0 z1 , −L12

k1(z1 + L12)

L12 − L11

−L12 ≤ z1 , −L11

k1 −L11 ≤ z1 , L11

k1(L12 − z1)

L12 − L11

L11 ≤ z1 , L12

0 L12 ≤ z1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

For clarity, according to (15) and (17), the smooth saturation
function s11(z1) and its derivative are drawn in Figs. 1a and b.
As we can see, both s11(z1) and (ds11(z1)/dz1) are continuous.

2. The definition of s12 is

s12(z2) =

0 z2 , −L22

(1 − 10)(L22 + z2)

M1

, −L22 ≤ z2 , −L21

1 −L21 ≤ z2 , L21

(1 − 10)(L22 − z2)

M1

L21 ≤ z2 , L22

0 L22 ≤ z2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where L22 ¼ M2/k2, L21 ¼ L22 2 M1/(1 2 10) (0 , 10 , 1).
Generally, 10 is chosen to be a very small positive number.
Here, M1, M2 and k2 are positive design parameters satisfying

M2 . M1k2/(1 − 10) (19)

which yields L21 . 0, so that s12(z2) is well defined. From
(18), it is easy to check that the first-order derivative of

Fig. 1 s11, s12 and their first-order derivatives

a s11

b ds11/dz1

c s12

d ds12/dz2
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s12(z2) is as follows

ds12(z2)

dz2

=

0 z2 , −L22

(1 − 10)/M1 −L22 ≤ z2 , −L21

0 −L21 ≤ z2 , L21

−(1 − 10)/M1 L21 ≤ z2 , L22

0 L22 ≤ z2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(20)

Graphically, s12 and its first-order derivative are drawn in
Figs. 1c and d. As we can see, the value of s12 varies
between zero and 1 2 10. Noting that |s11| ≤ M1 and
s1 ¼ s11

. s12, one has

|s1| ≤ M1 (21)

which shows that s1 is bounded. In Assumption 3, we have
stated the boundedness of ẋ1d . Combining the boundedness
of s1 and ẋ1d with (12), we know that a1 is also bounded.

Remark 2: It should be noted that the virtual control law
design in this paper is more flexible than that in [15]. In
view of (14), the gain of virtual control k1s12(z2) may vary
between 0 and 1 2 10. Specifically, if s12 is a constant, the
virtual control law a1 would be coherent to that in [15]. In
other words, the controller proposed in this paper is more
universal.

From (11)–(13), the derivative of z1 can be derived as

ż1 = z2 + a1 − ẋ1d = z2 − s1 (22)

Noting (22), from (9) and (12), one has

ż2 = ẋ2 − ȧ1

= C · �u − u1x2 − u2Sf + u3 + D− ẍ1d

+ ∂s11

∂z1

s12ż1 +
∂s12

∂z2

s11ż2

= −u1z2 + w(x)Tu+ C · �u − ẍ1d

+ ∂s11

∂z1

s12(z2 − s1) + ∂s12

∂z2

s11ż2 + D (23)

where w ¼ [2a1, 2Sf, 1]T, u ¼ [u1, u2, u3]T. Here, we need
to design a bounded control law �u such that it is within the
prescribed interval [2Mu, Mu]. Let the control law be

�u = �ua + �us (24)

where �ua is the adaptive control term and �us is the robust
control term. The concept of ARC is to compensate the
known part of the model dynamics by using �ua and to fight
against various model uncertainties and disturbances by �us
[21]. In order to render �u within the saturation limits, �ua
and �us should be bounded and designed as follows

�ua = 1

C
ẍ1d − wTû + ∂s11

∂z1

s12s1

( )
(25)

in which the parameter estimate û is updated online whose
adaptation law is given by

˙̂
u = Projû (Gwz2) (26)
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where Proj(†) represents the discontinuous projection
operator. Its definition and properties can be seen in [22].

From the definition of w, s11, s12 and s1, we can conclude
that �ua is bounded. More specifically, according to the
Cauchy–Schwartz inequality, it follows that

|�ua| ≤
1

C

(
‖ẍ1d‖1 + k1M1.

+
																		
2(ẋ2

1d + M 2
1 ) + 2

√
·
																									
u2

1 max + u2
2 max + u2

3 max

√ )

(27)

The robust control term �us is synthesised as

�us = −s2(z2)/C (28)

where s2 is a saturated function

s2(z2) =
−M2 z2 , −L22

k2z2 −L22 ≤ z2 , L22

M2 L22 ≤ z2

⎧⎨
⎩ (29)

where M2 is designed as a positive constant. According to
(29), �us is bounded by

|�us| ≤ M2/C (30)

For clarity, the curve of s2(z2) is depicted in Fig. 2. From
(24), (25) and (28), we have

�u = 1

C
ẍ1d − wTû + ∂s11

∂z1

s12s1 − s2(z2)

( )
(31)

Noting (27) and (30), then

|�u| ≤ �ub(M1, M2, k1, umax)

= 1

C

(
‖ẍ1d‖1 + k1M1 + M2

+
																		
2(ẋ2

1d + M2
1 ) + 2

√
·
																									
u2

1 max + u2
2 max + u2

3 max

√ )

(32)

If the controller parameters M1, M2, k1 and umax are designed
such that �ub(M1, M2, k1, umax) ≤ Mu, then the control input
u = �u will not cause saturation, which means that the

Fig. 2 Curve of s2(z2)
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saturation non-linearity has no influence on the system as if it
does not exist.

From (23) and (31), one has

ż2 = −u2z2 − (w(x)Tũ+ D) + ∂s11

∂z1

s12z2

− s2(z2) + ∂s12

∂z2

s11ż2 (33)

Because of the boundedness of w and Assumption 2, it can be
assumed that

|wTũ+ D| ≤ h (34)

where h can be regarded as the bound of the total effect of
model mismatch and unmodelled uncertainties. With this
assumption, we will prove later that z2(t) can be made
uniformly bounded if the parameters are designed to satisfy
certain conditions as follows

M2 ≥ h (35a)

L21 . h/(k2 − k1) (35b)

k1 L11 . h/(k2 − k1) (35c)

Now we have finished the design procedures of the proposed
SARC. In summary, the proposed SARC consists of: (i) the
control law given by (31), whose parameters satisfy (16),
(19), (35a)–(35c) and �ub ≤ Mu. (ii) the adaptation law
given by (26).

From (32), we know that the purpose of introducing the
saturated functions s11 and s2 is to make the control law �u
within saturation limit. But here comes a problem: what is
the functionality of s12? In view of (33), s12 can attenuate
the influence of (∂s11/∂z1)s12z2, since s12 becomes zero
when z2 is larger than L22. In the following section, we will
demonstrate that the introduction of s11, s12 and s2 into
the SARC can make the close-loop system stable.

4 Stability proof and performance analysis

Define a set Vc as

Vc = z1, z2:|z1| ≤
h + 11

k1(k2 − k1)
, |z2| ≤

h + 12

k2 − k1

{ }

where 11 , L11k1(k2 2 k1) 2 h, 12 , L21(k2 2 k1) 2 h,
11 . 12 . 0. Then we are going to prove that the error
states can be steered into the set Vc by SARC in finite time.

Theorem 1: Suppose that the saturated adaptive robust
controller proposed in Section 3 is applied to the plant (9).
Then,

1. the controller guarantees that all signals in the close-loop
system are bounded. Furthermore, the trajectory of the error
states [z1, z2]T reaches the prescribed set Vc in a finite time
and stay within thereafter.
2. the steady state of the tracking error z1 is bounded by
|z1(1)| ≤ (h/k1(k2 2 k1)).

Proof: The proof of (1) is divided into two parts: Part I, z2 gets
into the interval [2(h + 12)/(k2 2 k1),(h + 12)/(k2 2 k1)] in a
finite time. Part II, with this property of z2, z1 evolves into
IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1895–1905
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[−(h + 11)/(k1k2 − k2
1 ), (h + 11)/(k1k2 − k2

1 )] in a finite
time.

Part I: The evolution of z2 is discussed in three cases, that
is, (i) |z2| . L22; (ii) L21 , |z2| ≤ L22; (iii) (h + 12)/
(k2 2 k1) , |z2| ≤ L21. To simplify this proof, the sets
corresponding to the above three cases are defined as follows

V0 = {z1, z2:|z2| . L22}

V1 = {z1, z2:L21 , |z2| ≤ L22}

V2 = {z1, z2:(h + 12)/(k2 − k1) , |z2| ≤ L21}

V3 = {z1, z2:|z2| ≤ (h + 12)/(k2 − k1)}

Case 1: When |z2| . L22, from (20), (22) and (32), we have
s12 ¼ 0, (∂s12/∂z2) ¼ 0, s2 ¼ M2. Noting that u2 . 0
(Assumption 1), according to (33) and (34), then

z2ż2 ≤ −u2z2
2 + h|z2| − M2|z2| ≤ −(M2 − h)|z2| (36)

Since M2 ≥ h, (36) indicates that any trajectory with the
initial state [z1(0), z2(0)]T in V0 will reach the set V1 in a
finite time t01, which is bounded by

t01 ≤ z2(0) − L22

M2 − h
(37)

Case 2: When L21 , |z2| ≤ L22, from (18), (20) and (29), it
follows that s12 ≤ 1, |∂s12/∂z2| ¼ (1 2 10/M1) and
s2 ¼ k2z2. Noting that s11 ≤ M1, one has |∂s12/
∂z2s11| ≤ 1 2 10. In accordance to (26)

z2ż2 = −u2z2
2 + (wTũ+ D)z2 +

∂s11

∂z1

s12z2
2

− k2z2
2 +

∂s12

∂z2

s11z2ż2 (38)

which yields

1 − ∂s12

∂z2

s11

( )
z2ż2 = −u2z2

2 + (wTũ+ D)z2

+ ∂s11

∂z1

s12z2
2 − k2z2

2

Noting (34), since

10 ≤ 1 − ∂s12

∂z2

s11 ≤ 2 − 10 and
∂s11

∂z1

s12 , k1

we have

z2ż2 ≤ −u2z2
2 + h|z2| + k1z2

2 − k2z2
2

(1 − (∂s12/∂z2)s11)

≤ −(k2 L21 − k1L21 − h)|z2|
2 − 10

(39)

Owing to k2L21 ≥ k1L21 + h, (39) indicates that any trajectory
with the initial state [z1(0), z2(0)]T in V1 will reach the set V2

in a finite time t12. Moreover, the upper bound of the reaching
time t12 is

t12 ≤ |z2(0)|(2 − 10)

k2L21 − k1L21 − h
(40)
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Case 3: When (h + 12)/(k2 2 k1) , |z2| ≤ L21, from (18),
(20) and (29), we have s12 ¼ 1, (∂s12/∂z2) ¼ 0 and
s2 ¼ k2z2. Noting |z2| . (h + 12)/(k2 2 k1), from (33) and
(34), one has

z2ż2 = −u2z2
2 + (wTũ+ D)z2 +

∂s11

∂z1

z2
2 − k2z2

2

≤ (wTũ+ D)z2 − (k2 − k1)z2
2

≤ −(h + 12 − h)|z2|
= −12|z2| (41)

Owing to 12 . 0, (41) indicates that any trajectory with the
initial state [z1(0), z2(0)]T in V2 reaches the set V3 in a
finite time t23. Furthermore, the upper bound of the
reaching time t23 is

t23 ≤ |z2(0)|
12

(42)

From the analysis of the above three cases, we know that the
trajectory of the [z1, z2]T steps into V3 in a finite time, no
matter where the initial states are. That means z2 gets into
the interval [2(h + 12)/(k2 2 k1),(h + 12)/(k2 2 k1)] within a
finite time.

Part II: After a finite time, |z2| ≤ (h + 12)/(k2 2 k1). Under
this condition, we discuss the evolution of z1 in two cases, that
is, (i) |z1| . L11, and (ii) (h + 11)/(k1(k2 2 k1)) , |z1| ≤ L11.
For simplicity, the set V4 is defined as

V4 = {z1, z2:|z1| ≤ L11, |z2| ≤ (h + 12)/(k2 − k1)}

Note that V4 is a subset of V3. From (22), one has

z1ż1 = z1(z2 − s1) (43)

Case 1: When |z1| . L11 and |z2| ≤ (h + 12)/(k2 2 k1),
according to (14), (43) and |z2| ≤ (h + 12)/(k2 2 k1), the
following inequality holds.

z1ż1 ≤ − k1L11 −
h + 12

k2 − k1

( )
|z1| (44)

Since h + 12 , h + 11 , L11k1(k2 2 k1), (44) indicates that
any trajectory with the initial states [z1(0), z2(0)]T in V3 will
reach the set V4 in a finite time t34. Furthermore, the upper
bound of the reaching time t34 is

t34 ≤ z1(0)(k2 − k1)

L11k1(k2 − k1) − h − 12

(45)

Case 2: When (h + 11/k1(k2 2 k1)) , |z1| ≤ L11 and
|z2| ≤ (h + 12)/(k2 2 k1), according to (14) and (43)

z1ż1 = −k1z2
1 + z1z2 ≤ −k1z2

1 +
h + 12

k2 − k1

|z1|

≤ − h + 11

k2 − k1

− h + 12

k2 − k1

( )
|z1| = − 11 − 12

k2 − k1

|z1| (46)

Since 11 . 12, (46) indicates that any trajectory with the
initial state [z1(0), z2(0)]T in V4 will reach Vc in a finite
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time t4c, which is bounded by

t4c ≤
z1(0)(k2 − k1)

11 − 12

(47)

Combining the analysis of the above two cases, any trajectory
with the initial states in V3 will reach Vc in finite time.

From the deduction in Part I and Part II, we arrive at the
conclusion that no matter what the initial states are, the
trajectory of [z1, z2]T can be steered to Vc in a finite time.
Therefore the states [z1, z2]T are bounded. In addition,
because of using the projection mapping, all the states of
the adaptation law, that is, û1, û2 and û3 are bounded.
Noting that a1 is bounded and x2 ¼ z2 + a1, we know that
x2 is also bounded. From the boundedness of z1 and x1d, x1

is also bounded. Conclusively, all the states of the close-
loop system are bounded. Hence, (1) of Theorem 1 has
been proven. A

Now, we prove (2). According to the analysis of case (3) in
Part I, after a finite time the tracking error z2 satisfies

z2ż2 = −u2z2
2 + (wTũ+ D)z2 +

∂s11

∂z1

z2
2 − k2z2

2

≤ (wTũ+ D)z2 − (k2 − k1)z2
2

≤ − k2 − k1

2
z2

2 + h|z2| −
k2 − k1

2
z2

2

≤ − k2 − k1

2
z2

2 +
h2

2(k2 − k1)
(48)

Define V2 as V2 = (1/2)z2
2 and ks as ks ¼ k2 2 k1. From (48),

the derivative of V2 satisfies

V̇ 2 ≤ −ksV2 +
h2

2ks

(49)

which yields

V2(t) ≤ exp(−kst)V2(0) + h2

2k2
s

[1 − exp(−kst)] (50)

It indicates that the steady state of z2 is bounded by
z2(1) ≤ h/ks. Then, according to the first equation of (46),
the steady state of the tracking error z1 is bounded by
z1(1) ≤ h/(k1ks) ¼ h/[k1(k2 2 k1)].

Remark 3: From the proof of Theorem 1, we can see that if
|z2(0)| . (h + 12)/(k2 2 k1), |z2| decreases monotonically,
and the trajectory of [z1, z2]T will reach the set
V3 ¼ {z1, z2: |z2| ≤ (h + 12)/(k2 2 k1)} in finite time. Then
the tracking error z1 will decay to the neighbourhood of zero.

Theorem 2: With the saturated adaptive robust controller
proposed in Section 3 applied to the plant (9), asymptotic
output tracking can be achieved if the system is only
subject to parametric uncertainty after a finite time, that is,
D ¼ 0, ∀ ≥ t0 for some t0.

Proof: Define a positive definite function Va as

Va = (1/2)z2
2 + (1/2)ũ

T
G
−1ũ

According to Theorem 1, the trajectory of the states [z1, z2]T
IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1895–1905
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will enter Vc in finite time. If D ¼ 0, when [z1, z2]T [ Vc, the
derivative of Va can be derived as

V̇ a = −u2z2
2 + wTũz2 +

∂s11

∂z1

z2
2 − k2z2

2

+ ũ
T
G−1Projû (Gwz2)

≤ −u2z2
2 − (k2 − k1)z2

2 (51)

which indicates that z2 converges to zero asymptotically.
Subsequently, the tracking error z1 will also converge to
zero asymptotically according to (22). The Theorem 2 is
proved. A

5 Simulations

Consider the dynamic model given by (9) with the parameters
selected as: J ¼ 0.1 kg . m2, B ¼ 0.08 N . m2/(rad/s), Tc ¼
0.07 N . m2, Ra ¼ 5 V, KT ¼ 5 N . m2/A, KE ¼ 0.2 V/(rad/
s), Tl ¼ 0.1 N . m2, Mu ¼ 1 V. The disturbance D is chosen
as a uniformly distributed pseudo-random number with an
amplitude less than 0.05 N/kg, that is, D ¼ (0.1
rand(1) 2 0.05) N/kg. Then the dynamic model of a servo
system in the form of (9) can be derived as

ẋ1 = x2

ẋ2 = 10 · �u − 2.8x2 − 0.7Sf + 1 + 0.1 rand (1) − 0.05
y = x1

�u = sat(u, 1)

⎧⎪⎪⎨
⎪⎪⎩

(52)

The corresponding parameters of model (52) can be obtained
as

C = 10((rad/s2)/v), u1 = 2.8(1/s)

u2 = 0.7((rad/s2)/(N · m)), u3 = 1(rad/s2)

Assuming that these parameters are unknown, the parameter
bounds are chosen as: umin ¼ [2.5, 0.5, 0.5]T, umax ¼ [3, 1,
1.2]T, d ¼ 0.1. According to these prescribed bounds, by use
of the design procedure in Section 3, the parameters of the
SARC are synthesised as: a ¼ 500, k2 ¼ 200, M2 ¼ 2.3,
IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1895–1905
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10 ¼ 0.05, G ¼ diag([800, 160, 200]). The continuous
function Sf, which is used to approximate sgn(x2), is selected
as Sf ¼ (2/p)atan(900x2).

In the simulations, two cases are considered. Case 1: The
tracking performance will be demonstrated with a point-to-
point desired trajectory. Case 2: The stabilisation with
large initial error is considered. The purpose of this
configuration is to illustrate the anti-windup effect of the
proposed SARC.

5.1 Case 1: point-to-point trajectory

The input signal is a point-to-point trajectory with a
maximum angle of 0.2 rad, a maximum angular velocity of
0.4 rad/s, a maximum acceleration of 2 rad/s2, as depicted
in Fig. 3. The initial states of the plant (52) are set to zeros.
With the aforementioned SARC parameters and the
property of input signal, the upper bound of the control
input �ub can be computed according to (32) as

�u ≤ �ub = 1

C

(
‖ẍ1d‖1 + k1M1 + M2

+
																		
2(ẋ2

1d + M2
1 ) + 2

√
·
																									
u2

1 max + u2
2 max + u2

3 max

√ )

= 0.1 ×
(

2 + 5 × 0.1 + 2.3

+
																				
2(0.42 + 0.12) + 2

√
·
																
32 + 12 + 1.22

√ )

= 0.99739 , 1 (53)

According to (53), the control input is within the saturation
limit, which means that controller wind-up is avoided. As
shown in Fig. 4, the output tracking performance of SARC
is desirable. We can see that the tracking error is less than
0.5 × 1024 rad when simulation time is larger than 5 s, and
the amplitude of tracking error decreases gradually as time
increases. That is because the controller parameters are
tuned on line by the adaptation law. The parameter
estimates are shown in Fig. 5. As seen, the parameter
Fig. 3 Point-to-point trajectory
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estimates evolve to the actual values gradually. Moreover, the
estimates never exceed the prescribed bound owing to the use
of projection operator. Fig. 6 shows the control input of
SARC, whose amplitude is well within the preset bound
Mu ¼ 1, hence control input wind-up never occurs. This is
the most distinguished feature of the proposed SARC.

5.2 Case 2: stabilisation with large initial error

In this case, the input signal is set to zero, while the
initial condition of the plant is [x1, x2] ¼ [0.1, 0.2]. The
same controller parameters as those given in Subsection
5.1 are utilised in this case. It is obvious that the

Fig. 4 Output tracking error of SARC with a point-to-point trajectory as input

Fig. 5 Parameter estimates in Case 1

Fig. 6 Control input of SARC in Case 1
1902 IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1895–1905
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upper bound of the control input �ub can be computed
according to (32) as

�u ≤ �ub = 1

C

(
‖ẍ1d‖1 + k1M1 + M2

+
																		
2(ẋ2

1d + M 2
1 ) + 2

√
·
																									
u2

1 max + u2
2 max + u2

2 max

√ )

= 0.1 ×
(

0 + 5 × 0.1 + 2.3

+
																		
2(02 + 0.12) + 2

√
·
																
32 + 12 + 1.22

√ )

= 0.7607 , 1 (54)

From (54), the control input satisfies |�u| , Mu, hence the
control input wind-up is avoided.

Fig. 7 Trajectories of x1 and x2

Fig. 8 Control inputs of Case 2

a SARC
b Ordinary ARC
IET Control Theory Appl., 2011, Vol. 5, Iss. 16, pp. 1895–1905 1903
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Fig. 9 Trajectories of s11, s12 and s2
The state evolution of the close-loop system is depicted in
Fig. 7. Both states are steered to zero by SARC. The control
input of SARC is shown in Fig. 8a. As we can see, the control
input is within the bound Mu, thus the saturation non-linearity
has no influence on the close loop. This property is desired in
our controller design.

It should be noted that if we let s11 ¼ k1z1, s12 ¼ 1,
s2 ¼ k2z2, then the SARC will turn to be the ordinary
ARC. Fig. 8b shows the control input of the ordinary ARC
with the same parameters as those of the aforementioned
SARC. We find that the control input of the ordinary ARC
is saturated at the outset of the control process. Although
the large control input dose not certainly cause the close-
loop system unstable, it is harmful to the machine health.
Hence the control input amplitude of the SARC is
favourable.

Fig. 9 shows the variations of s11, s12 and s2. As is
depicted, at the startup s11 is saturated (i.e. s11 ¼ M1)
owing to the large magnitude of z1. Besides, s12 is small
and s2 is saturated at the startup, since z2 is larger than L21

in that phase. Noting s1 ¼ s11s12, from (31), we know that
the control input amplitude is restrained at the startup. As
the states [x1, x2] get close to the origin, the amplitudes of
z1 and z2 decrease, therefore s11 and s2 withdraw
saturation, and s12 equals to M12. Then, the SARC turns to
be an ordinary ARC and recover the performance of an
ordinary ARC without saturation.

6 Conclusions

In this paper, we proposed a saturated adaptive robust
controller for the DC servo system with input saturation.
It embeds several saturation functions in the control law
to keep the control input within the prescribed limit, and
thus the control input wind-up is avoided. We proved
that the proposed controller can not only assure the
stability of the close-loop system, but also provide
desirable control performance, that is, the tracking error
can be steered to the neighbourhood of the origin.
Moreover, asymptotic tracking can be achieved if the
system is only subject to parametric uncertainty. In
addition, the theoretical-analysis results were verified
through simulation studies.
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