
Asian Journal of Control, Vol. 13, No. 2, pp. 1 8, March 2011
View this article online at wileyonlinelibrary.com. DOI: 10.1002/asjc.281

NETWORKED PREDICTIVE CONTROL FOR HAMMERSTEIN

SYSTEMS

Jian Sun, Guo-Ping Liu, Jie Chen, and David Rees

ABSTRACT

This paper is concernedwith the problems of design and stability analysis
of networked predictive control for Hammerstein systems. The Hammerstein
nonlinearity is removed (or partially removed) by inverting it. By predicting the
future control sequence, the random network-induced delay and data dropout
are compensated actively. The stability of the closed-loop system is analyzed
by applying the switched Lyapunov function approach. Simulation results are
presented to illustrate the validity of the proposed method.

Key Words: Networked control systems, Hammerstein systems, networked
predictive control, switched Lyapunov function, network-
induced delay.

I. INTRODUCTION

Feedback control systems whose control loops are
connected with real-time networks to exchange infor-
mation and control signals are labeled as networked
control systems (NCSs). NCSs have received much
attention due to many practical advantages such as
reduced wiring, low power requirements, and flexi-
bility of operations [1, 2]. On the other hand, network
insertion also brings about negative effects such as the
network-induced delay and data dropout which present
challenges to traditional control theories. To attempt
to solve these problems, various control methods have
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been proposed [3–11]. For example, the modeling and
analysis of MIMO NCSs with multiple time-varying
delays were investigated in [3]. In [4], a model-based
control method was proposed whose key idea is using
the knowledge of plant dynamics to reduce the traffic
burden of the network. In [5], the stability of nonlinear
NCSs was studied and an important concept MATI
(maximum allowable transfer interval) was proposed.
NCSs were modeled as time-delay systems in [6, 7]
taking the networked delay and data dropout into
account. Based on the Lyapunov stability theory, the
stability and stabilization of NCSs were also investi-
gated. As for other methods, please refer to the recent
survey paper [12] and references therein.

Recently, a networked predictive method has been
proposed in [13, 14]. Numerical simulations and prac-
tical experiments have illustrated that this method can
adequately compensate for the network-induced delay
and data dropout. In this paper, we extend this method
to networked Hammerstein systems. The Hammerstein
model, where a linear time-invariant system is preceded
by a static input nonlinearity, is a typical block-oriented
nonlinear model. In many cases, Hammerstein systems
present a good tradeoff between the complexity of
nonlinear systems and the interpretability of linear
dynamical systems [15]. A complicated nonlinear plant
can be broken down where parts of the plant include
a Hammerstein system. Hammerstein systems have
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been used to model PH neutralization processes [16],
electrical drives for online testing [17], solid oxide
fuel cells [18], vestibulo-ocular reflexes (VOR) [19],
and acoustic echo cancelation [20]. So it is important,
in both theory and application, to study the control
method for networked Hammerstein systems. In [16],
the model predictive control for Hammerstein systems
was considered. The key idea in [16] is that the input
nonlinearity is removed from the control problem by
inverting it. If the inverse of the nonlinear function
is obtained accurately, the Hammerstein system is
stable if, and only if, its linear part is stable. So a
linear model predictive control method can be used to
design the controller for Hammerstein systems. This
idea is adopted in this paper to design a controller for
networked Hammerstein systems.

It should be noted that the predictive control of
networked systems based on the Hammerstein model
has been considered in [21, 22]. However, [21] has
only investigated the stability of the system when the
network-induced delay is constant, which is not always
the case in practical applications. In [22], the control
increment, instead of the control signal, is obtained by
the predictive control approach, which complicates the
application of the method since the past control incre-
ment should be known at the controller node. Further-
more, the method cannot removed the nonlinearity
essentially since f (�u(k)) �= f (u(k))− f (u(k−1))
even if the inverse of the nonlinear function is obtained
accurately. And, the stability analysis is on the basis
of the single common quadratic Lyapunov function
approach which is well-known to give a conservative
condition.

In this paper, a model predictive control based
strategy is proposed to compensate for the network-
induced delay and data dropout. It should be noted
that the control signal but not the control increment
is obtained in this approach by the delayed system
states which is always available for the controller
node. Therefore, this approach is easy to implement.
In order to deal with the input nonlinearity, we first
design a model predictive controller for the linear
part of the Hammerstein system, and an intermediate
control signal v(k) is obtained. Secondly, the control
signal u(k) is calculated by inverting the static input
nonlinearity, that is, u(k)= f −1(v(k)). If the inverse of
the nonlinearity is obtained accurately, the nonlinearity
will be essentially removed from the control problem.
The stability of the closed-loop systems is analyzed
using the switched Lyapunov function approach when
the inverse of the nonlinearity is accurate or inaccurate.
A numerical example is given to show the feasibility
and efficiency of the proposed method.

II. NETWORKED PREDICTIVE
CONTROL SCHEME

Consider the following single-input-single-output
Hammerstein system:

x(k+1) = Ax(k)+bv(k)

y(k) = cx(k)

v(k) = f (u(k))

(1)

where x ∈Rn , u, v, y∈R, and f (·) :R→R is a memo-
ryless static nonlinear function. A, b, and c are system
matrices with appropriate dimensions.

The above Hammerstein system is controlled
over the network. The network-induced delay and data
dropout are two main issues in networked control
systems. In a typical model predictive control applica-
tion, a sequence of forward control signals is obtained
at each sampling instant and only the current control
signal is applied to the plant and the remaining
predicted control signals are discarded. Note that
the model predictive controller can determine future
control signals and the network can transmit a set of
data at the same time, therefore, the model predictive
control method can be modified to compensate for the
network-induced delay and data dropout.

In this paper, it is assumed that all the packets in
the network are transmitted with time-stamps. On the
controller node, the controller receives sensor signals
subject to network transmission delay and data dropout.
Using these signals, the controller generates a sequence
of control prediction [u(k|k−�ksc), . . .,u(k−�ksc+Nu −
1|k−�ksc)] by the model predictive control method. The
sequence of control prediction is packed into one packet
and sent to the actuator node. On the actuator node,
a buffer is set to store the sequence of control predic-
tion. The actuator receives this packet and compares
it with the one already stored in the buffer according
to the time-stamp. If the packet just arrived is ‘newer’
than that stored in the buffer, it replaces the one in
the buffer, otherwise it will be discarded. As a result
of this comparison, the sequence of the control predic-
tion stored in the buffer is always the latest one. The
network-induced delay may be random which means
that the data packet that was sent earlier may arrive later,
and vice versa. We may refer to this phenomenon as
‘packet disorder’. After the above comparison process,
packet disorder can be dealt with. According to the
time-delay subjected by the packet in its transmission
from the controller to the actuator, the actuator selects
the appropriate control signal. For example, if the time-
delay from the controller to the actuator is �ca, so the
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appropriate control signal should be u(k+�ca|k−�ksc).
Clearly, using the above scheme, the network-induced
delay is compensated actively. In the above scheme,
data dropout is not seen as an infinite delay but ignored.
If the sum of the maximum round-trip delay (defined as
�̄= �̄sc+ �̄ca) and the maximum number of the contin-
uous data dropout (denoted as �) satisfies �̄+�<Nu , then
there will always be an appropriate control signal avail-
able at the actuator node.

In the following part, the design procedure for the
control prediction for Hammerstein system is presented.
The first step is to design a model predictive controller
for the linear part of system (1). There usually exists a
time-delay, �ksc, at k instant in the backward channel, so
the following objective function is adopted:

J (k) = ‖Ŷ (k|k−�ksc)−Yr (k)‖2Q
+‖V (k|k−�ksc)‖2R (2)

where Ŷ (k|k−�ksc)=[ŷ(k−�ksc+1|k−�ksc) · · · ŷ(k−�ksc+
Np |k−�ksc)]T is the predictive output, V (k|k−�ksc))=
[v(k−�ksc|k−�ksc) · · · v(k−�ksc+Nu −1|k−�ksc)]T is the
intermediate control input, Yr (k)=[yr (k−�ksc+1) · · · yr
(k−�ksc+Np)]T is the reference signal, Q and R are
constant weighting matrices, Np and Nu are the predic-
tion horizon and the control horizon, respectively.

The prediction for the linear part of system (1) is
given by:

ŷ(k−�ksc+ j |k−�ksc)

=cA j x(k−�ksc)+
j∑

i=1
cAi−1bv(k+ j−i |k−�ksc) (3)

Therefore,

Ŷ (k|k−�ksc)= Fx(k−�ksc)+HV (k|k−�ksc) (4)

where H is a block lower triangular matrix with its
nonnull elements defined by Hij=cAi− jb, ( j<Nu), and

HiNu =∑i−Nu
l=0 cAlb, and matrix F is defined as

F=

⎡
⎢⎢⎢⎢⎣

cA

cA2

...

cANp

⎤
⎥⎥⎥⎥⎦ .

The optimal control sequence V (k|k−�ksc) is
calculated by minimizing the objective function (2) and
is obtained as:

V (k|k−�ksc)

= (HT QH+R)−1HT (Yr (k)−Fx(k−�ksc)) (5)

Define the intermediate control signal from k to
k−�ksc+Nu −1 as V ∗(k|k−�ksc)=[v(k|k−�ksc) · · ·
v(k−�ksc+Nu −1|k−�ksc)]T , and thus

V ∗(k|k−�ksc)=M�ksc
V (k|k−�ksc) (6)

where M�ksc
=[0(Nu−�ksc)×�ksc

I(Nu−�ksc)×(Nu−�ksc)
].

Remark 1. If the state vector x(k) is not all measur-
able, an observer should be included, which calculates
the estimation by means of

x̂(k|k)= x̂(k|k−1)+L[ym(k)− ŷ(k|k−1)]

where ym(k) is the measured output.

From (5) and (6), the intermediate control
sequence from k to k−�ksc+Nu −1 is obtained.
Assuming the nonlinear function f (·) is invertible and
denoting its inverse f −1(·)=g(·), the control signal
sequence is obtained as

u(k+i |k−�ksc) = g(v(k+i |k−�ksc)),

i =0, . . .,Nu −�ksc−1 (7)

Denote U∗(k|k−�ksc))=[u(k|k−�ksc) · · ·u(k−�ksc+
Nu −1|k−�ksc)]T .

If g(·) can be obtained accurately, the input
nonlinearity can be essentially removed from the control
problem. However, in practice, it is nearly impossible
to calculate g(·) accurately, that is, f (g(·)) �=1(·). For
this case, similar to [23], denote the practical inverse
of f (·) as ĝ(·) and assume that

�1�≤ f (ĝ(�))≤�2� ∀�∈R (8)

for some �1≤�2<∞. The method of how to determine
�1 and �2 can be seen in [23].

The networked predictive control method for the
Hammerstein systems proposed in this paper can be
summarized by the following algorithm:

1. According to the sensor signal received, calculate
the intermediate control sequence V ∗(k|k−�ksc)
by (5)–(6). Obtain the control sequence U∗(k|k−
�ksc) by the inverting process (7);

2. Pack the control sequence U∗(k|k−�ksc) into one
packet and send it to the actuator side;

3. After the comparison process, the actuator
selects an appropriate control signal from the
control sequence according to the delay from the
controller to the actuator and apply it to the plant.
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III. STABILITY ANALYSIS

In this section, the stability of the closed-loop
system is investigated. In NCSs, the network-induced
delay may be random which presents a challenge to
the stability analysis. Moreover, when the inverse of
the input nonlinear function cannot be obtained accu-
rately, the nonlinearity may not be removed totally. It
also brings some difficulties in the stability analysis. In
this section, the switched Lyapunov function approach
is used to derive stability criteria for the system when
the inverse of the input nonlinear function is obtained
accurately or inaccurately.

Due to the comparison process, the control
sequence stored in the buffer is the latest one. Assume
the forward delay and backward delay that the control
sequence is subject to at the instant k are �kca and

�
k−�kca
sc , respectively. Denote the round trip delay as

�k =�kca+�
k−�kca
sc , and the control signal selected by the

actuator at the instant k is:

u(k) = u(k|k−�k)

=S�kU
∗(k−�kca|k−�k) (9)

whereS�k is the selection matrix with all entries being
zero except the (�kca+1)th being one.

For stability analysis, it is assumed that Yr (k)=0
without loss of generality. If g(·) is obtained accurately,
then

u(k) =S�kU
∗(k−�kca|k−�k)

= g(−K�k x(k−�k)) (10)

where K�k =S�k M�k−�kca
sc

(HT QH+R)−1HT F . Then,

the closed-loop system can be obtained as:

x(k+1) = Ax(k)+b f (u(k))

= Ax(k)+b f (g(−K�k x(k−�k)))

= Ax(k)−bK�k x(k−�k) (11)

Define �(k)=[xT (k)xT (k−1) · · · xT (k− �̄)]T
and rewrite (11) as:

�(k+1)=��k�(k) (12)

where

��k=

⎡
⎢⎢⎢⎢⎢⎣

A 0 · · · −bK�k 0 · · · 0 0

0

I�̄n×�̄n

.

.

.

0

⎤
⎥⎥⎥⎥⎥⎦

The position and value of the term−bK�k depends
on the delays in the backward and forward channel. So,
system (12) is a typical switched system. The number
of the subsystems is �̄+1. More specifically,

�0=
⎡
⎣A−bK0 0n×�̄n

I�̄n×�̄n 0�̄n×n

⎤
⎦ ,

and

� j =

⎡
⎢⎢⎣

A 0 · · ·0︸ ︷︷ ︸
j−1

−bK j 0 · · ·0︸ ︷︷ ︸
�̄− j

I�̄n×�̄n 0�̄n×n

⎤
⎥⎥⎦ ,

j =1, . . ., �̄.

When the inverse of f (·) cannot be obtained accu-
rately, then

u(k)= ĝ(−K�k x(k−�k)) (13)

Then, the closed-loop system can be obtained as:

x(k+1)= Ax(k)+bf (ĝ(−K�k x(k−�k))) (14)

From the sector constraint (8), it can be obtained
that there exists a real number �k satisfying �1≤
�k ≤�2 such that f (ĝ(�))=�k�. For this case, (14) is
rewritten as:

x(k+1)= Ax(k)−�kbK�k x(k−�k) (15)

The augmented closed-loop system can be obtained as:

�(k+1)=��k ,�k�(k) (16)

where ��k ,�k is obtained from ��k by replacing −bK�k
with −�kbK�k .

Recently, a switched Lyapunov function approach
[24, 25] has been proposed to investigate the problem
of stability and control synthesis for switched systems.
This method only yields a sufficient stability condition,
but the resulting condition is presented in terms of LMI
and thus easy to test. This method is less conservative
than those using a single quadratic Lyapunov function.
In this paper, the switched Lyapunov function approach
is used to derive a stability criterion for system (16).

Theorem 1. If there exists matrices Pi = PT
i >0 and

Gi (i ∈I={0,1,2, . . ., �̄})with appropriate dimensions
such that the following LMIs hold for all (i, j)∈I×I,

[ −Pi �T
i,�1

Gi

GT
i �i,�1 Pj −Gi −GT

i

]
< 0 (17)
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⎡
⎣ −Pi �T

i,�2
Gi

GT
i �i,�2 Pj −Gi −GT

i

⎤
⎦ < 0 (18)

where �i,�1 and �i,�2 are obtained from �i,�k by
replacing �k with �1 and �2, respectively, then system
(16) is asymptotically stable.

Proof. Define the following indicator function:

�(k)=[�0(k)�1(k) · · ·��̄(k)]T

with

�i (k)=
{
1, when �k = i

0, otherwise

A switched Lyapunov function with the following
structure is used to derive the stability condition for
system (16)

V (k,�k)=�Tk P(�(k))�k=�Tk

(
�̄∑

i=0
�i (k)Pi

)
�k (19)

For all (i, j)∈I×I

�V = V (k+1,�k+1)−V (k,�k)

= �Tk+1P(�(k+1))�k+1−�Tk P(�(k))�k

= �Tk+1Pj�k+1−�Tk Pi�k (20)

It is easy to see that the following equation hold for all
i ∈I

0=2�Tk+1G
T
i (−�k+1+�i,�k�k) (21)

Adding both sides of (20) into both sides of (19), one
can obtain

�V = �Tk+1(Pj −Gi −GT
i )�k+1−�Tk

×Pi�k+2�Tk+1G
T
i �i,�k�k (22)

For any �k ∈[�1,�2], there always exists 0≤�k ≤1
such that �k =�k�1+(1−�k)�2. Therefore, �i,�k =
�k�i,�1 +(1−�k)�i,�2 . One can obtained that

�V = �Tk+1(Pj −Gi −GT
i )�k+1−�Tk Pi�k

+2�k�
T
k+1G

T
i �i,�1�k+2(1−�k)�

T
k+1

×GT
i �i,�2�k

= �k

[
�k

�k+1

]T

×
[ −Pi �T

i,�1
Gi

GT
i �i,�1 Pj −Gi −GT

i

]

×
[

�k

�k+1

]
+(1−�k)

[
�k

�k+1

]T

×
[ −Pi �T

i,�2
Gi

GT
i �i,�2 Pj −Gi −GT

i

]

×
[

�k

�k+1

]
(23)

Therefore, if (17) and (18) hold, then �V<0 which
guarantees system (16) is asymptotically stable. This
completes the proof. �

For the case that the inverse of f (·) is obtained
accurately, the following corollary can be obtained on
the basis of Theorem 1.

Corollary 1. If there exists matrices Pi = PT
i >0 and

Gi (i ∈I) with appropriate dimensions such that the
following LMI holds for all (i, j)∈I×I,⎡

⎣ −Pi �T
i Gi

GT
i �i Pj −Gi −GT

i

⎤
⎦<0 (24)

then system (12) is asymptotically stable.

IV. A NUMERICAL EXAMPLE

In this section, a numerical example is given to
show the effectiveness of the proposed method.

Consider the following system with

A=
[
0.91 0.19

−1 1

]
, b=

[
0.5

0.5

]
, c=[1 0].

and the input nonlinearity is v= f (u)=u2.
The above Hammerstein system is controlled

over a network. It is assumed that the upper bound
on the backward delay is �̄sc=2 and the upper bound
on the forward delay is �̄ca=2. Firstly, it is assumed
that the inverse of f (·) is obtained accurately. So, the
input nonlinearity is totally removed by inverting it. For
this case, if the linear part of the above Hammerstein
system subject to the control scheme proposed in this
paper is stable, then the nonlinear system will be stable.
Choosing Q=1, R=1, Nu =10, and Np =10, we
compare our method with the LQR control method.
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Fig. 1. Output of the system with LQR controller without
delay compensation.

0 10 20 30 40 50 60 70
–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

y(
k)

k

Fig. 2. Output of the system with delay compensation.

Simulation results with initial state x0=[1 0]T are
given in Figs 1 and 2. It can be seen that the system is
unstable when using the LQR control method without
delay compensation, whereas the system is stable
when using our networked predictive control method.
It indicates that the method proposed in this paper is
effective.

If the inverse of f (·) is not obtained accurately
and the practical inverse of f (·) is ĝ(·)=�

√
v. For

the purpose of simulations, � is assumed to be a
random number between [0.8 1.2] or [0.9 1.1] or
[0.95 1.05]. For these three cases, applying Theorem
1 in this paper, it can be proved that such a system is
stable under our control scheme. Simulation results for

0 10 20 30 40 50 60 70
–0.5

0

0.5

1

y(
k)

k

with accurate inverse of input nonlinearity
inaccurate inverse with ρ between [0.8, 1.2]
inaccurate inverse with ρ between [0.9, 1.1]
inaccurate inverse with ρ between [0.95, 1.05]

Fig. 3. Output of the system with accurate or inaccurate
inverse of input nonlinearity.

these three cases with the same initial state x0=[1 0]T
are given in Fig. 3. These results illustrate the validity
of the theoretical analysis in this paper. From these
results, it can seen when f (ĝ(·)) is more approaching
1(·), the response of the system is more approaching
the case that the inverse of the input nonlinearity is
accurate.

V. CONCLUSIONS

In this paper, a networked predictive control
method for Hammerstein systems has been proposed.
This method can compensate for the random network-
induced delay and data dropout. This method takes
full advantage of the feature that predictive control
method can generate the future control signals and the
characteristic that data in a network are transmitted
using a data packet. The input nonlinearity is compen-
sated (or partially compensated) using its inverse.
The stability criteria for the closed-loop system have
been derived using the switched Lyapunov function
approach. A numerical example has illustrated the
effectiveness of the proposed method.
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