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Abstract. In this paper, a novel quantitative assessment ap-
proach for image mosaicing algorithms is proposed by eval-
uating the quality of an output mosaic image and comparing
with the input images. Five evaluation indices—entropy, clar-
ity, registration error, peak signal-to-noise ratio, and structural
similarity—are calculated and combined with the analytic hier-
archy process for comprehensive assessment. This approach
can overcome the lack of panoramic image and is easy to im-
plement. Experimental results show the objectivity and the
validity of the proposed approach. C© 2011 Society of Photo-Optical
Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3646746]
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1 Introduction
Image mosaicing has impacted a wide variety of application
areas.1 It is to combine multiple images with overlapping ar-
eas into a wide field or high-resolution image.2 The process
is divided into two steps. The first step is image registra-
tion whose purpose is to find the coordinate transformation
between a pair of images and align them. The second is im-
age blending which aims at smoothing the transition areas
and minimizing visual flaws, such as ghost, exposure differ-
ence, or misalignments. The performance of the algorithm
is, therefore, both related to these two steps.

To evaluate the performance of the image mosaicing algo-
rithm quantitatively is indispensable for algorithm compar-
isons and improvements. However, this aspect of research is
still in an early stage of development due to the difficulties
in obtaining the reference panoramas. The general solutions
usually require manual interventions. In Ref. 3, it rates the
mosaicing algorithm based on the comparison between the
output yielded on standard data sets and the ground truth
stitched manually. In Ref. 4, the input data sets are collected
by virtual camera, a software module simulating the imag-
ing process of an actual device. The shooting parameters
are fully customizable so that it is possible to compose the
ground truth. In Ref. 5, a reference image is specified as the
real world scenery in a test environment. Similarly, the in-
puts are simulated by applying a group of common imaging
distortions on narrow views of the reference image.

0091-3286/2011/$25.00 C© 2011 SPIE

In this paper, an assessment approach for image mosaicing
algorithms without reference panoramas is proposed. Five
evaluation indices are calculated and combined with the ana-
lytic hierarchy process (AHP) for comprehensive assessment.
It can reduce manual interventions and make the evaluation
much more convenient.

2 Assessment Scheme for Image Mosaicing
A novel assessment scheme for image mosaicing is estab-
lished as seen in Fig. 1. The most notable advantage of the
approach is that it does not need a panoramic image but the
original input narrow-angle image instead for comparison. It
is deemed that the gathered image for stitching is the most
realistic view from that angle in that projection. It is fair
enough for partial comparison. The indices extracted in this
aspect belonging to full-reference assessment are calculated
by comparing the similarity between the original input im-
ages and their neighboring images, or their inverse warped
partial mosaics. As for the whole mosaic image, it is up to its
own performance in perception. The related indices belong-
ing to no-reference assessment are calculated by measuring
the output mosaics globally.

3 Evaluation Criteria and Comprehensive
Assessment

3.1 No-Reference Criteria
The no-reference criteria include two indices. The first one
is entropy for characterizing the texture and information
amount of the output mosaics Imos, denoted as C1. The higher
the value of C1, the richer the image information. The second
one is clarity and defined as follows.

C2 = ClaritySobel8(Imos) =
M∑

x=1

N∑
y=1

|H (x, y)|2, H (x, y)>TN ,

H (x, y) =
√∑

(Imos(x, y) ∗ Sj )2 , (1)

Fig. 1 The framework of the proposed approach.
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Fig. 2 The computation process of registration error.

where Si are Sobel masks in eight directions (0 deg, 45 deg,
. . . , 315 deg),6 TN is the standard deviation of Imos, and M×N
is the size of Imos. The higher the value of C2, the less the
blur of the mosaic image.

3.2 Full-Reference Criteria
The full-reference criteria include registration error, peak
signal-to-noise ratio (PSNR) and structural similarity
(SSIM), which are defined as C3, C4, and C5.

C3 = 1

N − 1

N−1∑
n=1

εn

= 1

N − 1

N−1∑
n=1

⎛
⎝ 1

P

P∑
p=1

∥∥x jp − H−1
j Hi xip

∥∥
⎞
⎠ (2)

C4 = 1

N

N∑
n=1

PSNR(r̂n, sn) = 1

N

N∑
n=1

20 lg
255√

MSE(r̂n, sn)
,

(3)

C5 = 1

N

N∑
n=1

SSIM(r̂n, sn)

= 1

N

N∑
n=1

1

K

K∑
k=1

[ln(xk, yk)]α[cn(xk, yk)]β[sn(xk, yk)]γ, (4)

where P is the number of feature pairs in neighboring im-
ages, and the transform relations are shown in Fig. 2, N is the
number of input images or interested regions, r̂n is the inverse
warped partial mosaic image, and sn is the input image. Re-
fer to Ref. 8 for more parameter details of SSIM. The lower
the value of C3, the smaller the registration error. The higher
the value of C4, the more continuous in blending intensity.
The higher the value of C5, the less structure difference be-
tween the input sequence and the synthetic mosaics.

3.3 Comprehensive Assessment Based on AHP
For different applications, the demands for image mosaicing
are usually different. The above criteria play roles of varying
importance. To determine the weight coefficients, the prob-
lem is modeled as a hierarchy, shown in Fig. 3, and pairwise
comparisons of the AHP are performed. The comprehensive
assessment result is obtained by three steps.

The first step is constructing a set of pairwise comparison
matrices U using a scale of values ranging from 1 (equal

Fig. 3 The hierarchy tree of evaluation indices for visual quality.

importance) to 9 (absolute importance).

U =

⎡
⎢⎣

u11 u12 . . . u1n
u21 u22 u2n
. . .
un1 un2 unn

⎤
⎥⎦ , (5)

where uij is the relative importance value of the i’th factor
compared to the j’th, therefore, ui j = 1/u ji , uii = 1. The
elements of U can be determined by statistical data, inten-
sity of requirement on issues, or experts’ knowledge. Taking
the application in photograph editing for instance, they can
be defined as Table 1. For the criterion layer, the local full-
reference criteria are deemed to be slightly important over
the global no-reference criteria, since photograph editing re-
quires high accuracy and the evaluation usually pays close
attention to local details of the mosaics. Other matrices can
be also determined in this way, seen in Table 1.

The second step is computing a vector of priori-
ties in each layer. It equals the normalized eigenvector
[w1, w2, . . . , wn]T corresponding to the maximum eigen-
value of U, where wi is calculated by

wi = n

√√√√ n∏
j=1

ui j

/
n∑

i=1

n

√√√√ n∏
j=1

ui j . (6)

In addition, the judgments must pass through a consistency
check.9 The computation results of the above case are also
listed in Table 1.

The third step is synthesizing priority by aggregating
the relative weights up the hierarchy. The comprehensive

Table 1 An example on comparison matrices and weights in the
hierarchy.

Criterion layer Index layer B1 Index layer B2

A B1 B2 wi B1 C1 C2 w1
i B2 C3 C4 C5 w2

i

C3 1 1 1/2 0.240
B1 1 1/2 0.333 C1 1 1/3 0.250

C4 1 1 1/3 0.210
B2 2 1 0.667 C2 3 1 0.750

C5 2 3 1 0.550
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Table 2 Values of the evaluation indices.

C1 C2 C3 C4 C5

sc. 1 #1 6.8308 22187.4 0.3278 24.0025 0.9991

#2 6.8020 45455.2 0.4309 25.6590 0.9991

sc. 2 #1 7.2475 16138.5 0.2098 27.8449 0.9998

#2 7.2059 28174.2 0.2166 26.7563 0.9997

sc. 3 #1 7.2618 12553.5 0.3816 26.9503 0.9998

#2 7.2386 23478.5 0.3699 26.2622 0.9998

sc. 4 #1 6.7956 16256.3 0.2025 26.4237 0.9997

#2 6.5323 30427.2 0.2739 26.1030 0.9996

sc. 5 #1 7.0709 15771.4 0.2677 25.1656 0.9996

#2 7.0754 32270.6 0.3801 24.1162 0.9995

assessment result is expressed as

A =
m∑

i=1

⎛
⎝wi

n∑
j=1

wi
j Ci

⎞
⎠, (7)

where wi is weight coefficient of evaluation factor in criterion
layer, and wi

j is weight coefficient of evaluation index of the
i’th criterion factor in the j’th index layer, Ci is the normalized
index data. In the example, the computed overall weight
vector becomes W = [0.083, 0.250, 0.160, 0.140, 0.367].

4 Experiments and Conclusions
Two algorithms for photograph editing are compared here,
denoted by #1 and #2. They are both based on a projec-
tive model, but extracting different features for registration.
The blending methods are also different, #1 using center-
weighting but #2 using optimal seam stitching. In order to
test the validity of the proposed method, a series of mosaics
stitched by these algorithms were evaluated by 15 volunteers.
They observed each pair of mosaics under the same viewing

Table 3 The comparison of assessment results.

Proposed method Compared method

No-ref. Full-ref. Overall rms error

sc. 1 #1 0.5061 0.6269 0.5867
√

0.2556 ×
#2 0.8504 0.5911 0.6775 0.2623

sc. 2 #1 0.5501 0.6132 0.5922
√

0.1258
√

#2 0.8271 0.6018 0.6769 0.1126

sc. 3 #1 0.5307 0.6068 0.5814
√

0.1031
√

#2 0.8379 0.6083 0.6848 0.0905

sc. 4 #1 0.5337 0.6355 0.6015
√

0.1151
√

#2 0.8348 0.5833 0.6671 0.1068

sc. 5 #1 0.5060 0.6422 0.5968
√

0.1041 ×
#2 0.8507 0.5778 0.6687 0.1127

Fig. 4 Assessment experiments: the first row is the mosaicing results
of #1; the second row is the mosaicing results of #2; the third row is
manual stitched panoramas.

conditions and voted for the algorithm. The algorithm with
more votes was deemed as the better one. For all the test
scenes, #2 was superior to #1 in our subjective experiments.
Due to space limitations, we present five typical scenes with
different complexities and textures for illustration. We also
compared with another evaluation method on the basis of
rms intensity error between the final mosaics and the refer-
ence panoramas stitched by hand. The mosaicing results and
the reference panoramas are shown in Fig. 4. The computed
index data in the proposed scheme are shown in Table 2.
The relative parameters are set as recommendations in refer-
ences. Their assessment results are shown in Table 3. They
are all consistent with subjective judgments. Although some
local moving objects might be lost by #2 as seen in Fig. 4,
which results in lower full-reference evaluation, its global
impression significantly defeats the local details by avoiding
the blending ghost. However, some evaluation results of the
compared method are contrary to subjective judgments as
seen in Table 3, marked by “×,” mainly caused by moving
objects which increase the rms intensity error if taking a large
portion in the input image and lost in the final mosaics.

The above experiments show the objectivity and the sta-
bility of the proposed method. Owing to multicriteria and
AHP weights selection, the assessment is robust even if there
are variances and disturbances in different scenes. Indices
extension and parameter analysis will be the focus in future
research.
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