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a b s t r a c t

This paper addresses the partial state consensus problem ofmulti-agent systemswith second-order agent
dynamics and proposes an asynchronous distributed consensus protocol for the case with switching
interaction topology, time-varying delays and intermittent information transmission. ‘‘Partial state
consensus’’ means reaching an agreement asymptotically with each other on part, but not all, of each
individual’s states, where the concerned states usually cannot be decoupled from the other ones. Partial
state consensus has its broad applications in the coordination of multi-robot systems, distributed task
management, and distributed estimation for sensor networks, etc. This paper assumes that position-like
states are the only detectable information transmitted over the network and velocity-like states are the
key quantities of interest, which are required to be equalized. We first give the asynchronous distributed
protocol based on the delayed position-like state information and then provide its convergence result
with respect to velocity-like states. It is shown that if the union of the interaction topology across the
time interval with a given length always contains a spanning tree, then the proposed protocol will solve
the partial state (velocity-like state) consensus problem asymptotically.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Consensus theory, as a basic and fundamental research topic
in distributed coordination of multi-agent systems, has received
considerable attention from researchers in recent years because
of its potential applications in cooperative control of unmanned
air vehicles, formation control of mobile robots, design of sensor
networks, swarm-based computing, etc. [1–5]. It requires that all
agents reach an agreement on certain quantities of interest. The
shared common value may be the anticipated attitude in multiple
spacecraft alignment, position and velocity in flocking control, or
processing rate in distributed task management.

Due to the complexity of network dynamics, a large amount
of works assume that each individual follows a first-order
differential equation [6,7]. And there is also a fraction of the
literature concentrating on the networks with second-order agent
dynamics. For instance, in [8], Xie and Wang considered the state
consensus problem in networks of multiple double-integrators
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under fixed and switching topologies and designed the protocols
ensuring that position-like states converge to a common static
value asymptotically. In [9], Hong et al. used a set of first-
order agents to track an active second-order leader, where the
consensus state may be time-varying. Ren proposed and analyzed
consensus algorithms for networks of double-integrators in
[10,11] and second-order linear harmonic oscillators in [12] under
the assumption that each agent can fully or partially access its
neighbors’ relative states. Along this line, finite-time agreement
for multiple double-integrators was discussed in [13], where the
proposed protocols are non-smooth and their consensus property
was proved by the theory of finite-time ‘‘homogeneous’’ systems.
Under these algorithms, all agents’ states, including position-
like and velocity-like states, will reach consensus asymptotically.
However, in many practical situations, it often occurs that only a
small part of state variables of each agent are the key quantities
of interest that are required to be coordinated and usually cannot
be decoupled from the other ones. In these cases, the concept
of consensus in the traditional sense will not be suitable. ‘‘Partial
state consensus’’ means reaching an agreement asymptotically
with each other on part, but not all, of each individual’s states,
and in its studies, we may face many new challenges caused by
the constraint of coupled agreement and nonagreement variables,
such as characterizing the partial state consensus problem in
the framework of coordination of full state variables, distributed
estimations for interesting states of neighboring agents via the
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nonagreement coupled information, and so on. Those challenges
greatly increase the difficulty of design and analysis of partial state
consensus protocols. As the first step towards the general study
on partial state consensus, this paper considers the simplest case
and investigates the networks of second-order dynamic agents.
It is assumed that position-like states are the only detectable
information transmitted over the network and velocity-like states
are the quantities of interest, which are required to be equalized.
Next, we show several scenarios where the velocity-like state
is the only quantity of interest. The first example includes the
various versions of the Vicsek model [7,14,15], where the velocity
consensus is a prerequisite for further study. Also in the theoretical
study, in [16], Barbarossa and Scutari proposed a decentralized
sensor network scheme capable of reaching a globally optimum
maximum-likelihood estimate through self-synchronization of
nonlinearly coupled dynamical systems. Although each node in
the network they studied is a first-order dynamical system, the
final agreement estimate is related to the state derivative of
each sensor, namely, the authors studied the velocity-like state
consensus problem in essence. In applications, one example is
the congestion control of the internet. It is desirable that each
router coordinates its data-processing rate to be consistentwith its
neighbors according to the amount of date processed in the latest
time, since velocity coordination can greatly reduce the queuing
delay and package loss rate, and enhance the processing efficiency.
Another example is the decomposition of complex tasks. Each
agent also should coordinate its processing rate to improve work
efficiency.

The main contribution of this paper is to provide an effective
partial state consensus control strategy, valid for the case
with switching interaction topology, time-varying delays and
intermittent information transmission. We first give the design
result of the distributed coordination protocol based on delayed
position-like state information. Then by using the tools from graph
theory and nonnegative matrix theory, we show that if the union
of the interaction topology across the time interval with some
given length always contains a spanning tree, the partial state
consensus problemwill be solvable. Moreover, the studied system
is an asynchronous one, which means that each agent does not
necessarily approximate its neighbors’ velocity-like states for its
local feedback at the same time-steps by a global clock.

This paper is organized as follows. Preliminary notions are
assembled in Section 2. The considered problem is formulated in
Section 3. Themain result is presented in Section 4 and its technical
proof is postponed to Section 5. Finally, concluding remarks are
summarized in Section 6.

Notations: Throughout this paper, let
∏k

i=1 Ai = AkAk−1 · · · A1,
denoting the left product of matrices, let I be the identity matrix
and let 1 = [1, 1, . . . , 1]T with compatible dimensions. We write
A ≥ B if A − B is nonnegative.

2. Preliminary notions in graph theory

A directed graph G consists of vertex set V(G) = {v1, v2, . . . ,
vn} and edge set E(G) ⊂ V(G) × V(G). The edges such as (vi, vi)
are called self-loops. A path in directed graph G from vi1 to vik is a
sequence vi1 , vi2 , . . . , vik of finite vertices such that (vil , vil+1) ∈

E(G) for l = 1, 2, . . . , k − 1. Directed graph G is said to have a
spanning tree if there exists a vertex, called the root, such that it
can be connected to any other vertices through paths. The union
of a group of directed graphs Gi, i ∈ I, with a common vertex
set V , is also a directed graph with the vertex set V and with
the edge set given by


i∈I E(Gi), where I is the index set of the

group. Aweighted directed graphG(C) is a directed graphG together
with a nonnegative weight matrix C = [cij] ∈ Rn×n such that
(vi, vj) ∈ E(G) ⇐⇒ cji > 0. And in this case, cji is called the
weight of edge (vi, vj).

3. Problem formulation

The system studied in this paper consists of n autonomous
agents, labeled 1 through n. All the agents share a common state
space R2. Let xi and vi denote the position-like and velocity-
like states of agent i respectively and suppose that agent i, i =

1, 2, . . . , n, is with the following second-order dynamics
ẋi(t) = vi(t)
v̇i(t) = ui(t)

(1)

where ui(t) is a local state feedback, called protocol, to be designed
based on the information received by agent i from its neighbors.
Position-like variables xi may represent positions, workloads, etc.,
and they are the only information transmitted over the network.

Suppose that each agent can communicate with some other
agents which are defined as its neighbors. We use a directed
graph G with vertex set V(G) = {v1, v2, . . . , vn} to represent the
communication topology. Vertex vi represents agent i and edge
(vi, vj) ∈ E(G) if and only if there exists an available information
channel from agent i to agent j. Because of limited detection range
of agents, existence of obstacles, or external interference in signals,
the communication topology is usually dynamically changing. We
denote the changing topology by G(t).

Definition 1 (Partial State Consensus in the Second-Order Case).
Given protocol ui, i = 1, 2, . . . , n, ui or this multi-agent system
is said to solve the velocity-like state consensus problem, that is,
a partial state consensus problem, if for any initial states, there
exists a common asymptotically stable equilibrium point v∗

∈ R
for all agents with respect to velocity-like states, such that
limt→∞ vi(t) = v∗ for all i.

Remark. In the case of the networks of second-order dynamic
agents, governed by Eq. (1), the position-like state consensus
implies the velocity-like state consensus, and thus the velocity-
like state consensus is the only partial state consensus in the strict
sense. So this paper focuses on the latter case only.

3.1. Velocity-like state estimation

The objective of this paper is to propose an effective protocol
ensuring the solvability of the partial state consensus problem
under relaxable conditions. To achieve this end, we next give
a simple velocity-like state estimation strategy based on the
received position-like state information.

Assume that agent i detects its neighbors’ position-like states
intermittently at its update times t i0, t

i
1, . . . , t

i
k, . . . , and assume

that the update time sequence satisfies the following assumption:

(A1) there exist common lower and upper bounds Ťu, T̂u for the
length of time interval between any two consecutive update
times, such that 0 < Ťu ≤ t ik+1 − t ik ≤ T̂u for any k ∈ N and
any i ∈ {1, 2, . . . , n}.

The above assumption implies that the update time sequence is
strictly increasing, unbounded and with no finite accumulation
points, namely, limk→∞ t ik = ∞.

By the properties of the update time sequence, the studied sys-
tem can be classified into two categories: the one with the prop-
erty that t ik = t jk for all i, j, k is called the synchronous system, and
the other one without the preceding property is called the asyn-
chronous system. This paper will focus on the asynchronous case.

At update time t ik, agent i may get only some of its neighbors’
states because of the existence of communication time-delays.
Assume that each agent is equipped with on-board memory to
store information received from neighbors. The information may
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be with time-delays. To estimate the velocity-like states, it is
further assumed that the time-delays are detectable, i.e., the
information is time-stamped. Denote the available data of agent
i at time t byDi(t), which is composed of the information received
at previous finite update times.

To be consistent with the protocol proposed in the next
subsection, we give another definition of neighbors:

Definition 2 (Neighbor Set N E
i (t) and Estimation of Velocity-Like

States). Let TE > 0 be given. For any j ≠ i and any update time
t ik, if there exists at least one time-pair (t ijk1 , t ijk2 ) such that

(A2) xj(t
ijk
1 ), xj(t

ijk
2 ) ∈ Di(t ik);

(A3) t ik − TE ≤ t ijk2 < t ijk1 ≤ t ik,

then agent j is called a neighbor of agent i on the time interval
[t ik, t

i
k+1). Denote the neighbor set of agent i in this sense at time

t byN E
i (t). At update time t ik, if j ∈ N E

i (t ik), then agent i selects one
such time-pair (t ijk1 , t ijk2 ), satisfying Assumptions (A2) and (A3), and
updates the estimation about the velocity-like state of agent j by

v
Ei
j (t) =

xj(t
ijk
1 ) − xj(t

ijk
2 )

t ijk1 − t ijk2
, t ∈ [t ik, t

i
k+1). (2)

In the above definition, parameter TE is a pre-given parameter,
known by all agents and independent of parameters Ťu and T̂u in
Assumption (A1), and it represents the maximum allowable time-
delay, guaranteeing that the data used in the designed protocol
are sufficiently new. Moreover, the selection of TE affects the
number of elements in the neighbor set N E

i (t) and the structure
of interaction topology GE(t), defined in the next subsection. And
it also affects the final value of the consensus state.

In the process of data selection in approximating velocity-like
states, it may happen that there exist more than one time-pairs,
like (t ijk1 , t ijk2 ), satisfying Assumptions (A2) and (A3). In this case,
agent i can choose one time-pair randomly or by the most-recent-
data strategy. In the latter case, xj(t

ijk
1 ) is the most recent position-

like state information about agent j inDi(t ik) and xj(t
ijk
2 ) is themost

recent position-like state information satisfying Assumptions (A2)
and (A3). Obviously, in this case, if j ∈ N E

i (t ik) ∩ N E
i (t ik+1), then

t ij,k+1
1 ≥ t ijk1 and t ij,k+1

2 ≥ t ijk2 . It can be shown by simulations that
the most-recent-data strategy is more likely to result in a higher
convergence rate. Notice that the choice of time-pair (t ijk1 , t ijk2 ) in
fact affects the final value of consensus state and different agents
may choose different policies in a distributedmanner for the choice
among multiple time-pairs, satisfying Assumptions (A2) and (A3).
Moreover, a lower bound requirement of t ijk1 − t ijk2 can be added to
reduce the effect of noise.

Remark. Note that estimation v
Ei
j (t) and thus protocol (3) are only

dependent on the time difference t ijk1 − t ijk2 and state displacement
across the time interval [t ijk2 , t ijk1 ]. Therefore, synchronization of all
agents’ clocks is not a necessary condition, and t ijk1 and t ijk2 can be re-
placed by the ones decided by the local clock of agent i or j accord-
ing to practical situations. However, it is required that all agents
should evolve in the same time scale. From this viewpoint, the up-
date time sequence t i0, t

i
1, . . . , i = 1, 2, . . . , n, which is decided

by the global clock, can be seen as the one decided by local clocks
of agents, without losing the consensus property of protocol (3).

Remark. If all agents can get their neighboring agents’ position-
like states without time-delays, then the assumption of ‘‘time-
stamped information’’ can be removed. One example is the velocity
consensus control of multiple robots, where xi(t) represents the

position of agent i. In this case, we can suppose that at detecting
times t ijk2 and t ijk1 , agent i can detect the relative positions of its
neighboring agent j, namely, xj(t

ijk
2 ) − xi(t

ijk
2 ) and xj(t

ijk
1 ) − xi(t

ijk
1 ),

respectively. If the displacement of agent i over the time interval
[t ijk2 , t ijk1 ] is obtainable by agent i, then xj(t

ijk
1 )−xj(t

ijk
2 ) can be gotten

by (xj(t
ijk
1 ) − xi(t

ijk
1 )) − (xj(t

ijk
2 ) − xi(t

ijk
2 )) + (xi(t

ijk
1 ) − xi(t

ijk
2 )).

3.2. Partial state consensus protocol

With the above preparations, we now propose the following
distributed partial state consensus protocol2:

ui(t) =
1∑

j∈N E
i (t ik)

Wij(t ik)

−
j∈N E

i (t ik)

Wij(t ik)(v
Ei
j (t) − vi(t)),

t ∈ [t ik, t
i
k+1), (3)

where Wij(t ik) are called weighting factors [7], taken from a given
compact set W consisting of positive real numbers.

Obviously, ui(t) and vi(t) are not smooth but they are piecewise
differentiable with respect to time t . By this fact and by the
asynchrony of update times, the differential Mid-Value Theorem
does not hold, in other words, for the estimation v

Ei
j (t) given by

Eq. (2), there may not exist t ′ ∈ [t2ijk, t
1
ijk] such that vj(t ′) = v

Ei
j (t).

This shows that system (1) is not equivalent to the first-order case
with time-delays studied in [4].

We end this section with a further discussion on the com-
munication topology. We know that the communication topology
G(t) only represents the available information flow among agents,
whereas it does not indicate whether the neighbors’ information is
used in the feedback. The following definition of ‘‘interaction topol-
ogy’’ reflects the relationship determined by the inter-usage of in-
formation.

Definition 3 (Interaction Topology GE(t)). The vertex set of inter-
action topology GE(t) is {v1, v2, . . . , vn}, representing the n agents
respectively, and (vj, vi) ∈ E(GE(t)) if and only if j ∈ N E

i (t).

4. Convergence result

This section presents the convergence result about the system
under protocol (3) and its technical proof is postponed to the next
section.

Theorem 4. If there exists some T > 0, such that for any t ≥ 0, the
union of interaction topologyGE(t) over time interval [t, t+T ] always
contains a spanning tree, and asynchronous system (1) satisfies
Assumptions (A1)–(A3), then protocol (3) solves the partial state
(velocity-like state) consensus problem asymptotically.

Remark. The sufficient condition provided in the above theorem
is a mild and less conservative one. Here, ‘‘containing a spanning
tree’’ is in fact to guarantee that the information of at least one
agent can flow to the entire networks directly or indirectly. In
the literature, the typical interaction graph conditions ensuring
solvability of consensus problems under the associated proposed
protocols can be generally classified into three categories. The
first is that the interaction topology is always connected (in
the bidirectional case) or always has a spanning tree (in the
unidirectional case). This is the most conservative one. The
second is that the periodical union of interaction graph is always

2 This paper assumes that if N E
i (t) = ∅, then ui(t) = 0.



Author's personal copy

778 F. Xiao et al. / Systems & Control Letters 59 (2010) 775–781

connected or always contains a spanning tree. The sufficient
condition stated in Theorem 4 belongs to this category. The last
one is the union of all forthcoming interaction graphs contains
a spanning tree and this is the mildest one for the case under
time-dependent interaction topology. On the other hand, there
is a tradeoff between the interaction graph condition and the
basic setup of the studied system. Generally speaking, the stronger
basic assumption is expected to have a relatively milder sufficient
interaction graph condition. Till now, to the best of our knowledge,
the only few results that can get the last mildest condition usually
concern the special system in the bidirectional case, see the work
of Moreau [17].

To determine whether the partial state consensus problem is
solvable by the topology of information channel G(t), we have the
following corollary:

Corollary 5. Assume that the communication topology G(t) is time-
invariant and contains a spanning tree, and assume that each
agent can obtain its neighbors’ (determined by G(t)) position-like
states with bounded time-delays for any time, that is, there exists
a maximum transmission time-delay Tmax and if there exists an
information channel from agent j to agent i, then, at any time t,
agent i can obtain agent j’s position-like state, denoted by xj(t ′),
with the property that 0 ≤ t − t ′ ≤ Tmax. Then there exists an
available distributed control rule in the form of protocol (3), satisfying
Assumptions (A1)–(A3), and it solves the partial state (velocity-like
state) consensus problem asymptotically.

Proof. To prove the result, it suffices to find a possible distributed
control rule, satisfying the assumptions assumed by Theorem 4.

Suppose that the maximum transmission time-delay is Tmax
and let the update time sequence of agent i, i = 1, 2, . . . , n, be
t i0, t

i
1 = t i0 + Tmax, . . . , t ik+1 = t ik + Tmax, . . . . Then it satisfies

Assumption (A1) with Ťu = T̂u = Tmax. We further assume that
agent i measures all its neighbors’ position-like state information
in the time intervals (t ik−1, t

i
k), k = 1, 2, . . . . For j with (vj, vi) ∈

E(G), denote the obtained information related to agent j in time
interval (t ik−1, t

i
k) by xj(t

ij
k ). Then t ik−2 < t ijk < t ik and thus t ijk > t ijk−2.

For t ∈ [t ijk , t
ij
k+1), k ≥ 4, let

v
Ei
j (t) =

xj(t
ij
k ) − xj(t

ij
k−2)

t ijk − t ijk−2

.

Then it is well defined. Since t ik−4 < t ijk−2 < t ijk ≤ t ik, we have
that t ijk and t ijk−2, in the place of t ijk1 and t ijk2 , satisfy Assumptions (A2)
and (A3)with TE = 4Tmax. Furthermore, the above assumption also
implies that for t ≥ maxij t

ij
4 , E(GE(t)) = E(G(t)). Therefore, under

the above proposed control rule, the system solves the partial state
consensus problem asymptotically. �

5. Technical proof

This section performs the convergence analysis on asyn-
chronous system (1) based on the nonnegative matrix approach,
which is an effectiveway to show the consensus property ofmulti-
agent systems with switching topology and time-varying delays.
The first subsection summarizes some key lemmas, established
in [4,5,18]. They describe the convergence property of the product
of a compact set of SIA (Stochastic, Indecomposable and Aperiodic)
matrices and give relaxable conditions ensuring a stochasticmatrix
to be an SIAmatrix, respectively. The second subsection collects all
event times andmerges them into a single ordered time sequence,
denoted by t0, t1, . . . , tk, . . . . The evolution of velocity-like states
and their estimation values is studied with respect to the above
newly defined time sequence. This approach is called the ‘‘Analytic

Synchronization’’ method in [19]. Thenwe define a set of new vari-
ables vA

i (tk+1) by (xi(tk+1) − xi(tk))/(tk+1 − tk), i = 1, 2, . . . , n. It
is shown that the estimated velocity-like states v

Ei
j (·) can be rep-

resented by a convex combination of variables vA
j (·). By investi-

gating the relationship among these variables, we introduce an
augmented (m + 1)n-dimensional state variable y(k), and then
transform the continuous-time system (1) into its equivalent
discrete-time system (7), where m is a nonnegative integer,
determined by Assumptions (A1) and (A3). Thus the partial state
consensus problem can be treated as a full state consensus prob-
lem equivalently. However, the state matrix Ξ(k) of the discrete-
time systemhas its special structure,which is different from that of
the existing ones investigated in the literature [4,5,7,15,18]. Fortu-
nately, by constructing and characterizing two compact setsM and
H in the third subsection, which include all possible statematrices
of system (7) and all possible products of a finite number of state
matrices at consecutive time-steps of system (7), respectively, we
can apply the key lemmas, presented in the first subsection, and
get the convergence result. Here, we emphasize that although the
proof steps are similar to that taken in [4], in other words, they are
all based on the presented key lemmas, the differences between
the contributions of the two papers are also obvious. First, they
study two distinct kinds of problems. The feasibility of the proof
with the help of Lemmas 6–8 owes much to the skillful choice of
state variable y(k). Second, the proof details are also different. This
paper gives the only arguments that are needed to be clarified and
omits the obvious ones that can be learnt from other literature.

5.1. Key lemmas

In this subsection, we first give the definition of SIA matrix and
then list three important lemmas, which are useful in proving the
main result.

A stochastic matrix A is called indecomposable and aperiodic
(SIA) if there exists a column vector ν such that limk→∞ Ak

= 1νT .

Lemma 6 ([5, Lemma 5]). Let A be a compact set, consisting of n×n
SIA matrices. If for any k and any A1, A2, . . . , Ak ∈ A (repetitions
permitted),

∏k
i=1 Ai is SIA, then for any given infinite matrix sequence

A1, A2, . . . , Ak, . . . (repetitions permitted), there exists a column
vector ν such that

lim
k→∞

k∏
i=1

Ai = 1νT .

Lemma 7 ([18, Lemma 1]). Let A be a stochastic matrix. If G(A)
contains a spanning tree with the property that the associated root
vertex has a self-loop in G(A), then A is SIA.

Lemma 8 ([4, Lemma 8]). Let A0, A1, . . . , Am be n × n nonnegative
matrices, let

D =


A0 A1 · · · Am
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


(m+1)n×(m+1)n

let

Q0 =


I
I

I
0

. . .0
I 0


(m+1)n×(m+1)n
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and let Qk = D + Q0
k for any k ∈ {1, 2, . . . ,m}. If G(

∑m
i=1 Ai)

contains a spanning tree, then G(Qk) also contains a spanning tree
with the property that the associated root vertex has a self-loop in
G(Qk).

5.2. Equivalent representation

In this subsection, we employ the ‘‘Analytic Synchronization’’
method and get the discrete-time Eq. (7), that is, an equivalent
representation of the original continuous-time system. The basic
idea of ‘‘Analytic Synchronization’’ is to study the asynchronous
system by using a suitably defined discrete-time synchronous
system, evolving on the collection of event times of all original
subsystems [19].

First, for symbolic simplicity, we generalize the definition of
v
Ei
j (t) and introduce aweightmatrix A(t) = [aij(t)] ∈ Rn×n, where

v
Ei
j (t) is generalized by

1. if j ∈ N E
i (t), then v

Ei
j (t) is defined by Eq. (2);

2. if j = i, then v
Ei
j (t) = vi(t);

3. in other cases, vEi
j (t) = 0,

and A(t) is defined by

1. if N E
i (t ik) ≠ ∅,

aij(t) =


Wij(t ik)∑

s∈N E
i (t ik)

Wis(t ik)
, j ∈ N E

i (t ik)

0, otherwise,

t ∈ [t ik, t
i
k+1)

2. if N E
i (t ik) = ∅,

aij(t) =


1, j = i
0, otherwise, t ∈ [t ik, t

i
k+1).

By the above definition, vEi
j (t), i ≠ j, is a piece-wise constant

function of time t , and if ignore the weight of each edge and self-
loops in G(A(t)), then G(A(t)) and GE(t) represent the same inter-
action topology. Noticing thatWij(t ik) ∈ W , we get that all possible
A(t) constitute a compact set A and their nonnegative entries are
not less than min{w : w ∈ W}/((n − 1)max{w : w ∈ W}).

Now collect all time {t ik, t
ijk
1 , t ijk2 : i = 1, 2, . . . , n, j ∈ N E

i (t ik),
k ∈ N} and relabel the nonnegative elements of them by t0,
t1, . . . , tk, . . ., in increasing order such that t0 = 0, tk < tk+1. Here,
we assume that t i0 = 0 for all i ∈ {1, 2, . . . , n}. Indeed, without
this assumption, we can consider the dynamics of agents after
time maxi t i0 and get the same convergence result. For simplicity,
denote tk+1 − tk by τk and denote (xi(tk+1) − xi(tk))/(tk+1 − tk) by
vA
i (tk+1) (superscript ‘‘A’’ means ‘‘average velocity’’), for k ∈ N, i =

1, 2, . . . , n.
Next we study the evolution of variables vi(tk) and vA

i (tk) with
respect to k. We will prove that their reaching an agreement
implies the solvability of the partial state consensus problem.
Solving Eq. (3) gives that

vi(t) = e−(t−t ik)vi(t ik) + (1 − e−(t−t ik))

n−
j=1

aij(t ik)v
Ei
j (t ik)

xi(t) − xi(t ik)
t − t ik

=
1 − e−(t−t ik)

t − t ik
vi(t ik)

+


1 −

1 − e−(t−t ik)

t − t ik


n−

j=1

aij(t ik)v
Ei
j (t ik)

(4)

where t ik < t ≤ t ik+1. It can be observed that 0 < (1−e−(t−t ik))/(t−
t ik) < 1 for any t ik < t ≤ t ik+1. The above equation implies that



vi(tk+1) = e−τkvi(tk) + (1 − e−τk)

n−
j=1

aij(t isi)v
Ei
j (t isi)

vA
i (tk+1) =

1 − e−τk

τk
vi(tk)

+


1 −

1 − e−τk

τk

 n−
j=1

aij(t isi)v
Ei
j (t isi)

(5)

where si ∈ N such that t isi ≤ tk < tk+1 ≤ t isi+1.

This part gives an expression v
Ei
j (t isi) in Eq. (5) in terms of vA

j (·).

Suppose that j ∈ N E
i (t isi), t

ijsi
2 = tli and t ijsi1 = tpi . By Assumptions

(A1) and (A3), there exists an m ∈ N, independent of i, j, k (cf.
Lemma 2 in [4]), such that tk−m ≤ tli < tpi ≤ t isi for k ≥ m. Then

v
Ei
j (t isi) =

xj(tpi) − xj(tli)
tpi − tli

=
τpi−1v

A
j (tpi) + τpi−2v

A
j (tpi−1) + · · · + τliv

A
j (tli+1)

τpi−1 + τpi−2 + · · · + τli
(6)

which means that v
Ei
j (t isi) is a convex combination of vA

j (tli+1),

vA
j (tli+2), . . . , v

A
j (tpi). From the fact that pi − li ≤ m, it follows that

some of its coefficients are not less than 1/m.
To represent the evolution Eq. (5) in matrix form, we

introduce the augmented state variable y(k) = [v(tk)T , vA(tk)T ,
vA(tk−1)

T , . . . , vA(tk−m+1)
T
]
T for k ≥ m, where v(tk) = [v1(tk),

v2(tk), . . . , vn(tk)]T and vA(tk) = [vA
1(tk), v

A
2(tk), . . . , v

A
n(tk)]

T .
Combining Eqs. (5) and (6) yields that

y(k + 1) = Ξ(k)y(k), (7)

where Ξ(k) ∈ R(m+1)n×(m+1)n is defined in Box I and Aγ (k) =

[aγ

ij ], γ ∈ {0, 1, . . . ,m}, are defined by

1. if N E
i (t isi) ≠ ∅,

aγ

ij =


τk−γ aij(t isi)

τpi−1 + τpi−2 + · · · + τli
,

j ∈ N E
i (t isi), k − pi + 1 ≤ γ ≤ k − li

0, otherwise

2. if N E
i (t isi) = ∅,

aγ

ij =


1, j = i, γ = 0
0, otherwise.

In the following, the matrix given in Box I, with the above
structure, is denoted byM(τk, A0(k), A1(k), . . . , Am(k)) to indicate
its dependence on parameters τk, A0(k), A1(k), . . . , Am(k).

By the above definition, it can be easily obtained that

Lemma 9. 1.
∑m

γ=0 Aγ (k) = A(tk) and thus Ξ(k) is stochastic;
2. if j ∈ N E

i (t ik), there exists 1 ≤ γ ≤ m, such that aγ

ij ≥ min{w :

w ∈ W}/(m(n − 1)max{w : w ∈ W}).

Remark. Eq. (7) can be seen as the dynamical equation of
a discrete-time multi-agent system consisting of (m + 1)n
agents under the time-varying interaction topology G(Ξ(k)),
and variable y(k) is the column vector, stacked with the
states of the (m + 1)n agents. These states are the velocity-
like states vi(tk), i = 1, 2, . . . , n, and the average velocity
vA
i (tk), v

A
i (tk−1), . . . , vA

i (tk−m+1), i = 1, 2, . . . , n. In Lemma 11,
we will show that their convergence to a consensus state as k →

∞ will lead to that vi(t), k = 1, 2, . . . , n, reach consensus
asymptotically as t → ∞. Consensus problems of discrete-
time multi-agent systems were widely studied by researchers.
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Ξ(k) =



e−τk I + (1 − e−τk)A0(k) (1 − e−τk)A1(k) · · · (1 − e−τk)Am−1(k) (1 − e−τk)Am(k)
1−e−τk

τk
I + (1 −

1−e−τk
τk

)A0(k) (1 −
1−e−τk

τk
)A1(k) · · · (1 −

1−e−τk
τk

)Am−1(k) (1 −
1−e−τk

τk
)Am(k)

I
. . .0

I
0


Box I.

However, this discrete-time model cannot be covered by the
existing ones, such as those studied in [17,7,20], because the
diagonal entries of state matrix Ξ(k) are not all larger than zero
and parameters τk may take any value in (0, T̂u], see [4] for detailed
discussions.

Definition 10 (Full State Consensus). The discrete-time system (7)
is said to solve a (full state) consensus problem if for any initial state,
there exists an asymptotically stable equilibrium point 1y∗, y∗

∈

R, such that limk→∞ y(k) = 1y∗, in other words, limk→∞ vi(tk) =

limk→∞ vA
i (tk) = y∗, i = 1, 2, . . . , n.

The following lemma states the relationship between
continuous-time system (1) and discrete-time system (7).

Lemma 11. System (1) solves a partial state (velocity-like state)
consensus problem if and only if system (7) solves a full state
consensus problem.

Proof. The necessity is obvious and we only prove the sufficiency.
Suppose that limk→∞ vi(tk) = limk→∞ vA

i (tk) = v∗ for all
i = 1, 2, . . . , n. Thus by Eqs. (4) and (6) and Assumption (A1),
limt→∞ vi(t) = v∗. �

The next subsection will prove Theorem 4 by showing system
(7) solves a full state consensus problem.

5.3. Convergence analysis of system (7)

This subsection consists of three parts. The first part gives an
equivalent representation of the condition assumed in Theorem 4.
The second part characterizes the properties of state matrix Ξ(k)
of system (7) by two compact matrix sets M and H . The last part
gives the proof of Theorem 4.

First, the following lemma restates the condition provided in
Theorem 4 in an equivalent way.

Lemma 12. If there exists T > 0, such that for any t ≥ 0, the union of
interaction topology GE(t) across the time interval [t, t + T ] always
contains a spanning tree, then there exist a positive integer h and a
positive real number Th with the following property:

for any k ∈ N, there exists a subset of {tk, tk+1, . . . , tk+h−1},
denoted by Tk, such that the union of GE(t) on Tk contains a spanning
tree, and for any tl ∈ Tk, Th ≤ τl ≤ T̂u.

Proof. It is a straightforward consequence of Assumptions (A1)
and (A3) and the details are omitted, see Lemma 9 in [4] for similar
discussions. �

In order to make use of Lemma 6 to perform the convergence
analysis, we next construct two compact sets M and H .

The first compact set M includes all possible state matrices of
system (7), which is defined by

M =


M(ς,N0,N1, . . . ,Nm) :

0 ≤ ς ≤ T̂u,N0,N1, . . . ,Nm are nonnegative,
and there exists some A′

∈ A, such that

N0 + N1 + · · · + Nm = A′



where we use the convention (1 − e−ς )/ς |ς=0 = limς→0(1 −

e−ς )/ς = 1. The second compact set H includes all possible
products of h state matrices at consecutive time-steps of system
(7), which is defined by

H =

 h∏
i=1

M(ς i,N i
0,N

i
1, . . . ,N

i
m) :

M(ς i, ·) ∈ M, and there exists a subset of
{1, 2, . . . , h}, denoted by T , such that for any

k ∈ T , Th ≤ ς k
≤ T̂u and G

−
i∈T

m−
j=0

N i
j


contains a spanning tree


where h and Th are given in Lemma 12.

Lemma 13. 1. M and H are compact sets, and for any k ≥

m, Ξ(k) ∈ M and
∏k+h−1

l=k Ξ(l) ∈ H ;
2. for anyH ∈ H,H is SIA, and for any k ∈ N, if H1,H2, . . . ,Hk ∈ H

(repetitions permitted), then
∏k

i=1 Hi is SIA.

Proof. (a) The compactness of M follows from the fact that set
A and interval [0, Ťu] are compact; the compactness of H follows
from that

1. M is compact;
2. all possible choices of T and the spanning tree are finite;
3. the product of finite matrices is a continuous function;
4. all the nonnegative entries of matrices in A are lower bounded

by min{w : w ∈ W}/((n − 1)max{w : w ∈ W}).

(b) The conclusion that Ξ(k) ∈ M follows directly from
the definitions of Ξ(k) and M, and Lemma 9. By Lemmas 9
and 12, G(

∑
l∈Tk

∑m
γ=0(Aγ (l))) contains a spanning tree, and thus∏k+h−1

l=k Ξ(l) ∈ H .
(c) Let H =

∑h
i=1 M(ς i,N i

0,N
i
1, . . . ,N

i
m) and T be the

associated subset of {1, 2, . . . , h} such that for any k ∈ T , Th ≤

ς k
≤ T̂u and G

∑
i∈T

∑m
j=0 N

i
j


contains a spanning tree. Let Q0 be

the same as the Q0 in Lemma 8, let

Di =


N i
0 N i

1 · · · N i
m

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


and let ε = inf{e−ς , (1 − e−ς )/ς : ς ∈ (0, T̂u]}. Then ε > 0 and
h∏

i=1

M(ς i, ·) ≥

h∏
i=1


εQ0 + (1 − e−ς i

)Di


≥ εhQ0
h
+ εh−1

h−
i=1

(1 − e−ς i
)Q0

i−1DiQ0
h−i

≥ min{εh, εh−1(1 − e−Th)}


Q0

h
+

−
i∈T

DiQ0
h−i
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where the last inequality follows from Q0
i−1Di ≥ Di and from the

fact that Th ≤ ς i
≤ T̂u for i ∈ T .

Let the first n rows of DiQ0
h−i be


Bi
0, B

i
1, . . . , B

i
m


, where Bi

j ∈

Rn×n, j = 0, 1, . . . ,m. Then
∑m

j=1 B
i
j =

∑m
j=0 N

i
j and thus∑

i∈T

∑m
j=0 B

i
j =

∑
i∈T

∑m
j=0 N

i
j . Since G

∑
i∈T

∑m
j=0 N

i
j


contains

a spanning tree,G
∑

i∈T

∑m
j=0 B

i
j


also contains a spanning tree. Let

D ∈ R(m+1)n×(m+1)n, with the same first n rows as
∑

i∈T DiQ0
h−i and

with the other rows being zeros. Then
h∏

i=1

M(ς i, ·) ≥ min{εh, εh−1(1 − e−Th)}(Q0
h
+ D).

By Lemma 8 and the fact that Q0
k

= Q0
m if k ≥ m, G(Q0

h
+ D)

contains a spanning tree with the property that the associated root
vertex has a self-loop, and so is G(H). Since H is stochastic, by
Lemma 7, H is SIA.

By the same arguments, we have that for any H1,H2, . . . ,Hk ∈

H,
∏k

i=1 Hi is SIA. �

Proof of Theorem 4.
This part only proves that system (7) solves a full state

consensus problem.
It follows from Lemmas 6 and 13 that there exists ν ∈ R(m+1)n

such that

lim
p→∞

ph−1∏
l=0

Ξ(m + l) = 1νT .3 (8)

For any k ∈ N, there exists pk such that pkh ≤ k < (pk + 1)h. And
since matrix Ξ(m + l) is stochastic,

lim
k→∞


k∏

l=0

Ξ(m + l) − 1νT


= lim

k→∞


k∏

l=pkh

Ξ(m + l)



×


pkh−1∏
l=0

Ξ(m + l) − 1νT


.

Since M is compact, we get that matrix
∏k

l=pkh
Ξ(m + l) in the

above equation belongs to a bounded set. Furthermore, it follows
from Eq. (8) that

lim
k→∞


pkh−1∏
l=0

Ξ(m + l) − 1νT


= lim

pk→∞

pkh−1∏
l=0

Ξ(m + l) − 1νT
= 0.

Thus,

lim
k→∞


k∏

l=0

Ξ(m + l) − 1νT


= 0,

which yields that

lim
k→∞

y(k) = lim
k→∞

k∏
l=0

Ξ(m + l)y(m) = 1

νTy(m)


,

that is, system (7) solves a full state consensus problem. �

3 If k2 < k1 , then
∏k2

l=k1
Ξ(l) = I .

6. Conclusion

This paper considered the partial state consensus problem
in networks of second-order agents with dynamically changing
interaction topologies and time-varying communication time-
delays and proposed an asynchronous partial state consensus
protocol, whose validity can be guaranteed under the relaxable
condition that position-like states as the only information are
transmitted intermittently over the network. Nevertheless, there
still exist some other interesting problems that need to be
addressed, such as the design and analysis of a full state consensus
protocol in the framework of this paper.
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