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Scale-free networks and consensus behaviour among multiple agents have both attracted much attention. To

investigate the consensus speed over scale-free networks is the major topic of the present work. A novel method is

developed to construct scale-free networks due to their remarkable power-law degree distributions, while preserving the

diversity of network topologies. The time cost or iterations for networks to reach a certain level of consensus is discussed,

considering the influence from power-law parameters. They are both demonstrated to be reversed power-law functions

of the algebraic connectivity, which is viewed as a measurement on convergence speed of the consensus behaviour. The

attempts of tuning power-law parameters may speed up the consensus procedure, but it could also make the network

less robust over time delay at the same time. Large scale of simulations are supportive to the conclusions.
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1. Introduction

The communication topology of the multi-agent
system (MAS) has been an important topic for the
decade. Building an interaction network whose topol-
ogy is a complete graph is luxurious and generally
wasteful. In search of a robust and cost-effective so-
lution, researchers come up to the basic preferential
attachment rules. Then the scale-free networks are
re-discovered by the end of last century.[1] A net-
work is “scale-free” if its degree distribution follows
a power law, or at least asymptotically. It is re-
ported to be one of the most popular models in multi-
agent systems.[1,2] Scale-free networks are regarded to
be more robust and immune to the random muta-
tion and perturbation. In Ref. [3], the authors intro-
duced a structural method which could help to distin-
guish scale-free networks. This provides a mathemat-
ical method to measure whether a network is “scale-
free”. Many researchers model[1−13] and study the
properties[14−23] of scale-free networks. These mod-
els introduce new parameters besides the power-law
distribution, or lead to quite limited power-law expo-
nent. Furthermore, these models cannot predict the
parameters of a network with limited N nodes be-
fore it is constructed. Researchers have studied typ-

ical scale-free behaviours such as computer virus,[19]

epidemic spreading models[20] and opinion spreading
dynamics.[21] One of the conclusions is that the pe-
culiar topological features of scale-free network and
the absence of small-world properties may determine
epidemic spreading speed. Cascading in scale-free
networks[22,23] and the tolerance[24] against it is dis-
cussed, and protection scheme is proposed in Ref. [25].
The robustness of weighted networks against cascad-
ing failure is discussed in Ref. [26]. An optimal weight-
ing scheme to suppress cascades and traffic congestion
is stated in Ref. [27]. Literatures discussed the ap-
proximate eigenvalues of adjacency matrix and graph
Laplacian of scale-free networks.[28−30] The spectral
properties are reported to be related the consensus
behaviour of a network.[31,32]

Consensus or synchronization is a major tech-
nique of MAS applications. Compared with the strat-
egy based on agents’ reactive behaviours, consensus
algorithms lead to simpler communication mechanism
and less information types—merely the “consensus in-
formation”. Many researchers have proposed consen-
sus algorithms. A typical continuous consensus model
was presented in Ref. [32], where the concept of solv-
ability of consensus problems was first proposed. In
Ref. [33], the authors studied asynchronous consen-
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sus problems of continuous-time agent model with dis-
continuous information transmission. The authors in
Ref. [34] investigated the consensus problem speci-
fied for scale-free networks. There are also literatures
concerning with nonlinear or chaotic systems.[35−37]

Cao et al. first introduced the concept of fractional-
order consensus algorithms,[38] where a comparison
between integer-order and fractional-order consensus
algorithms were drawn. One application of network
consensus is to solve the diffusion control problem—
where and how much neutralizer the mobile actua-
tors should spray.[39] Experimental implements of con-
sensus under directed, possibly switching interaction
topologies with a real multi-robot system is given in
Ref. [40]. A review of consensus algorithms can be
found in Ref. [41]. About synchronization and com-
plex networks, readers can refer to Ref. [42].

Many consensus algorithms have been introduced.
Now more and more efforts are put on the algo-
rithms’ performance. In Ref. [43], the authors first
defined the concept of “asymptotic convergence fac-
tor” and “per-step convergence factor” to help mea-
sure the convergence speed. These concepts are also
used in Refs. [44] and [45] to investigate the conver-
gence speed over switching topology networks. In
Ref. [46], the authors used the “decay factor” to rep-
resent the dynamics of the network topology. The
largest eigenvalue of a Lyapunov-like matrix recur-
sion is used to characterize the convergence rate of
the consensus algorithm. It has been reported that
the hubs are of leading role during consensus proce-
dure. When the dominant direction is from the hub to
the non-hub nodes, both the speed to reach consen-
sus and robustness to the communication delay are
greatly improved.[47] Researchers have been designing
topology evolving strategies to speed up the conver-
gence rate.[44−49] However, there still exist systems
whose topology do not change very often. For in-
stance, the power grid in the North America. The
convergence speed of static topology networks still de-
serves a follow-up.

The purpose of the present work is to investigate
the relationship between power-law distribution pa-
rameters and the consensus behaviour, mainly con-
cerning the time cost to reach a certain level of consen-
sus. The undirected random scale-free networks have
a single connected component, without self- or mul-
tiple links. It requires to create scale-free networks

which are solely determined by power-law distribu-
tion, in a stochastic way. The basic thought is simple:
to create scale-free networks from power-law distribu-
tions. In the real world, different topologies may share
a common degree distribution. The proposed network
construction method preserves the diversity. It leads
to a new path to stochastic scale-free networks of a
determined degree distribution.

The following of the paper is organized as fol-
lows. In Section 2, we introduce the strategy to cre-
ate networks which obey certain power-law distribu-
tions. The consensus algorithms and the measurement
of consensus will be stated in Section 3. Large scale
simulations and analysis are provided in Section 4.
The conclusions are drawn in Section 5.

2. Scale-free network: instruction

and construction

The models to create scale-free networks are
widely researched. But they often bring in new pa-
rameters while offering quite limited power-law dis-
tribution parameters. The famous B-A model[1] in-
troduces a degree parameter of the new-added vertex.
Although this value has no impact on the final power-
law exponent γ = 3 as time (or node number) tends to
infinity, it strongly impacts the distribution if the time
is limited. The dynamic model in Ref. [10] brings in
a strength parameter, and the power-law distribution
has γ ∈ (2, 3]. Although it can provide a larger inter-
val for γ by adjusting the strength parameter, it is a
tedious job to assign a local strength to each edge. It is
an excellent algorithm to scale-free networks, but not
to certain power-law distributions. A rewiring model
which does not change the total size of the graph is
introduced in Ref. [11]. It can only provide γ = 2
approximately. Under certain conditions the degree
distribution would be far from a power law. The copy
model[12] does not guarantee the value of power-law
parameters. An evolving scale-free model[13] may cre-
ate power-law degree distribution with the exponent
γ ∈ (3,∞), with a new introduced parameter “attrac-
tiveness”. Within the present work, an algorithm to
create scale-free networks is raised. The basic idea is
from a reversed thinking: creating scale-free networks
from power-law distributions, rather than rediscover-
ing power laws in ready-made networks.
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Starting with the symbols and some graph theory
preliminaries, the method to construct networks with
given power-law distribution is introduced in this sec-
tion. Two networks are given as samples for the pro-
posed method, comparing with the classic B-A model.

2.1.Preliminaries

For a multi-agent system with N agents, the net-
work topology can be denoted by a graph G whose ad-
jacency matrix is A. The element of the i-th row and
the j-th column in matrix A indicates the connection
state between agents i and j. Assume A = [aij ]N×N ,
aij 6= 0 if nodes i and j are connected, and j is called
a neighbour of node i. All the neighbours of agent i

form the set Ni. For unweighed graph, aij = 1 when i

and j are connected. If the nodes i and j are discon-
nected, aij = 0. If the graph is undirected, aij = aji.

Let B be the N × N diagonal matrix, where the
diagonal elements bj is the number of neighbours the
j-th agent has. Then the graph Laplacian can be de-
fined as

L(G) = B −A.

The second smallest eigenvalue λ2 of L(G) is
called the algebraic connectivity,[50] which is indi-
cated by α(G). By this definition, the analysis of the
consensus speed in networks can be reduced to the
spectral analysis of the graph Laplacian. Let ν(G)
and η(G) denote the node-connectivity and the edge-
connectivity of a graph G, we have:[46]

λ2(L(G)) = α(G) ≤ ν(G) ≤ η(G).

According to this inequality, a network with a larger
algebraic connectivity is more robust to both node-
failures and edge-failures. Researchers have found
that the algebraic connectivity could imply the con-
vergence speed of a consensus problem.[49,51,52] Intu-
itively, the connection situation should have a strong
relationship to the network consensus behaviour.

A necessary condition for a multi-agent system to
reach consensus is that all the agents are connected.[32]

A necessary and sufficient condition for the stability
of the network while reaching consensus is given as[52]

τ ≤ τmax =
π

2λN
,

where τ is the time delay in the network and λN is the
largest eigenvalue of the graph Laplacian. This means
that λN can be a measurement of network robustness
over delay.

2.2.Degree assignment

In general, the power-law distribution can be de-
scribed by the probability density function:

p(x)dx = Pr(x ≤ X < x + dx) = Cd−γdx.

This distribution diverges at x = 0. To avoid this,
there must be a lower bound xmin > 0 and then the
density function is:

p(x) =
γ − 1
xmin

(
x

xmin

)−γ

. (1)

As the edge number of a vertex is always an integer,
the discrete form of probability density function is of
the form

p(d) = Pr(degree = d) = Cd−γ .

In a connected graph, no vertex is with edge degree
0. With the lower bound dmin > 0 on the power-law
behaviour,

p(d) =
d−γ

ζ(γ, dmin)
,

where

ζ(γ, dmin) =
∞∑

n=0

(n + dmin)−γ

is the generalized Hurwitz zeta function.
Considering that the formulas for continuous

power-law distributions are much simpler than those
for discrete distributions, it is common to approximate
a discrete power-law distribution with its continuous
counterpart. There are several methods to achieve this
goal, one of which is to round the samples generated
from continuous power law to the nearest integer. This
approach could provide quite accurate results. We use
this method to generate the degree values for each
vertex. According to the probability density function
(1), we can obtain the cumulative distribution func-
tion (CDF) for edge degree as

Pr(degree ≤ d) = 1−
(

d

dmin

)1−γ

.

Let the graph order (node number) be N , build
a random vector b that bi ∈ (0, 1), i = 1, 2, . . . , N . If
its elements obey the continuous uniform distribution
bi ∼ U [0, 1], one can obtain the degree of each node
by solving the above equation

d = ROUND(dmin · (1− b)1/(1−γ)). (2)

Here the degrees are all set to be integer in case of
unweighed graph.
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2.3.Building the scale-free networks

A possible solution to build a scale-free network is
to make use of the degree values generated in Eq. (2).
However, this method is not good because deadlocks
might happen. There might be no suitable node pairs
to insert a new edge. In order to build a network with
given parameters, we raise the solution that can crack
into the deadlocked graph and put new edges into it.

Let A represent the adjacency matrix of the net-
work. Assume that the node number N and power-law
distribution parameters {γ, dmin} are given, we sug-
gest the following procedures to generate a scale-free
network:

(i) Assign the degree value d to each node accord-
ing to Eq. (2). Arrange d in decreasing order. If

∑
d

is odd, d1 = d1 + 1. Let D = d.
(ii) Insure the spanning tree. For each nodes

i except the first one, pick a node r in the set
{1, 2, . . . , i − 1}, which has Dr > 0. Connect node
i and r, Di = Di − 1, Dr = Dr − 1. Take step (v) to
solve the deadlock if a node cannot be inserted into
the present subgraph, till a connected component with
N nodes is completed.

(iii) Insert edges into the network according to
the degree values D. For each nodes i, while Di > 0,
random select a node r ∈ V, r 6= i,Dr > 0. Connect
node i and r, Di = Di − 1, Dr = Dr − 1. In fact, the
deadlocks might happen here. Leave the nodes which
cannot be paired in the graph. In case the total edge
number in an undirected graph is even, the sum of
leftover degrees must be a positive even integer.

(iv) For each node i with extra degree larger than
2, randomly select a pair of nodes {p, q} which are not
connected to it. Break the edge pq and insert the node
i, to form edges ip and iq. Di = Di − 2. See Fig. 1
for a visualized explanation.

Fig. 1. To solve the deadlocks while building the graph.

Left: step 4. Right: step 5.

(v) After the above step, there are some nodes
with extra degree equals 1. For 2 nodes {i, j} with
extra degree, randomly select a pair of nodes {p, q}
which are not connected to either of {i, j}. The

present subgraph should keep connected if edge pq

was eliminated. Break edge pq, add 2 edges ip and
jq. Di = Di − 1,Dj = Dj − 1.

The provided method ensures the diversity of the
generated graphs since the nodes and edges are cho-
sen stochastically. Like the other algorithms, there
are limitations to the proposed method. Since the de-
gree value of a node in unweighed graphs must be an
integer, the exponent cannot be continuous. But the
proposed method can provide close-enough samples
for a power-law distribution. Since the edge number
of a graph will of course be on [n − 1, n(n − 1)/2],
the graph size will determine the limitation of power
law parameters. The algorithm is demonstrated to be
capable of solving most of the deadlocks.

The parameters are estimated with maximum
likelihood estimation (MLE), and then tested by
Kolmogorov–Smirnov test.[53] The goodness-of-fit is
represented by the maximum distance between sample
data and the fitted function. It is referred to as “ac-
curacy of fitness” in the present work. Its definition
is:

acc = max
d≥dmin

|F (d)− P (d)|,

where F (d) is the CDF of the sample data and P (d)
is the CDF of the estimated power-law distribution.

The first 2 samples in Fig. 2 are networks gener-
ated by the above method. The desired distributions
are p(d) = d−3/ζ(3, 7) and p(d) = d−4/ζ(4, 10). The
estimations are quite close to the desired values. Sam-
ple 3 is a 5000-node network from the B-A model, with
a “seed” of 15-node full graph, and degree 7 for each
new attached node. But the estimated parameters are
γ̂ = 2.8510, d̂min = 8, which are far from the claimed
γ = 3 and desired dmin = 7.

Another issue about the B-A model is the aver-
age clustering coefficient. The networks from the B-A
model always have average clustering coefficient near
0. But this may not be true for all the scale-free
networks. The proposed algorithm has the average
clustering coefficient varying in a wider area (Fig. 3).
The clustering coefficient tends to 0 as γ grows, for
the rapid decreasing power law indicates star-like net-
works. The average clustering coefficients are between
0.4127 and 0.8529 when γ = 2 and dmin = 5, due to
the simulation data.

120513-4
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Fig. 2. Simulations on proposed algorithm of 5000 nodes. Circles denote the samples. Lines represent the

probability density functions obtained via maximum likelihood estimation (MLE). Sample 1: constructed by

the proposed method. The desired power-law distribution is p(d) = d−3/ζ(3, 7). The data fitting results are

γ̂ = 3.0230, d̂min = 7, acc = 0.0071. Sample 2: constructed by the proposed method. The desired power-law

distribution is p(d) = d−4/ζ(4, 10). The data fitting results are γ̂ = 3.9770, d̂min = 10, acc = 0.0075. Sample 3:

constructed by B-A model. The desired power-law distribution is p(d) = d−3/ζ(3, 7). The data fitting results

are γ̂ = 2.8510, d̂min = 8, acc = 0.0086.

Fig. 3. The average clustering coefficient of scale-free

networks constructed by the proposed method.

3. Consensus protocols

Two consensus protocols are taken in the
paradigms, to investigate the convergence speed of
networks. One of them is continuous, and the other is
discrete. It is necessary to point out that the discrete
one is not the counterpart of the continuous algorithm.
Let hi(t) indicate the state of the i-th agent at time t,
thus h(t) = {h1, h2, . . . , hN} is the state of the whole
network. Assume Ni denotes the set of neighbours of
node i. The continuous consensus algorithm[29] could
be presented as:

ḣi(t) = −
∑

j∈Ni

Lijhj(t). (3)

Assume di indicates the degree of the node ni. If
hi(k) is the state of node ni at the step k, the discrete
consensus algorithm[31] could be represented as:

hi(k + 1) =
1

di +
∑

j∈Ni
dj

×
(

hi(k)di +
∑

j∈Ni

hj(k)dj

)
. (4)

A measurement of the “disagreement” among the
agents could determine whether the consensus has
been reached.[31] It is defined as:

S(h(t)) =
∑

i

Si(h(t)) =
∑

i

∑

j∈Ni

‖hi(t)− hj(t)‖. (5)

For an arbitrary positive value ε, if there exists a
tc so that when t > tc, S(t) < ε, the system is said to
reach ε-consensus at tc. The symbol tc is used as the
consensus time within this paper for convenience. It is
proved that the control laws presented in Eqs. (3) and
(4) are both convergent. Therefor S(h(t)) converges
to zero as t → ∞. The two protocols can both reach
an ε-consensus state with arbitrary small ε.

4. Convergence speed of scale-

free networks

The node number N of the networks is set to 1000.
In fact, it is just a limit of the generated graph order.

120513-5
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It could be any positive integer, which does not deter-
mine the power-law parameters. Thirty-two samples
are generated for each set of parameters {γ, dmin}. γ

varies between 2.1 to 5 with the interval of 0.1, and
the integer dmin varies between 5 to 20. The averaged
results of 32 samples are stated in this section. The
initial state of nodes in each run is set to be the same
as hi(0) = rand (0, 1).

The power-law parameters γ and dmin describe
scale-free behaviour. The major purpose is to find
out if these parameters influence time cost to reach ε-
consensus. The investigation on algebraic connectivity
is conducted since it can be seen as a measurement of
convergence speed. The robustness over time delay is
discussed by the study of λN . The observations on
graph size is also included. Two consensus protocols
are the continuous algorithm (3) and the discrete one
(4).

4.1.Time expense and the power-law

distribution

The first investigation is about ε-consensus time
tc. See Fig. 4. The consensus time tc (ε = 10−3)
grows dramatically as the γ increases. Meanwhile,
the network reaches consensus more quickly when the
minimum degree dmin is larger. This is because the
larger dmin results in larger graph size, which could
lead to better connectivity of the graph. Although
there are conclusions that too many connections in a
graph may postpone the consensus, the size of a scale-
free network is far from the size of the corresponding
full graph. Thus the minimum degree has strong im-
pact on the time cost. The relationship could be of
the form tc = dmin

g(γ) · f(γ).

Fig. 4. Time cost tc to reach ε-consensus. ε = 0.001.

An interesting finding is that the time cost tc is a
reversed power-law function of the algebraic connec-
tivity. See Fig. 5. The larger the λ2 is, the sooner
the consensus could be achieved. The tc = C · λβ

2 re-
lationship is very similar with each other in spite of
different values of γ. That is to say, the consensus be-
haviour of scale-free networks could be characterized
with the algebraic connectivity, besides the consensus
protocol. As the consensus algorithm is the external
cause, the algebraic connectivity could be the only
character of a network when discussing the consen-
sus problems. The estimated function for the data in
Fig. 5 is tc = 3.7493λ−0.8326

2 , with the sum of squares
due to error equal to 0.3812.

Fig. 5. Time cost versus algebraic connectivity, with dif-

ferent values of γ. The line indicates the estimation with

parameters Ĉ = 3.7493, β̂ = −0.8326.

4.2.Algebraic connectivity and the

power-law distribution

See Fig. 6 for the relationship among λ2, dmin

and γ. The λ2 decreases as γ increases. The relation-
ship between λ2 and dmin is perfectly monotonically
increasing. Actually, they fit very well to a linear re-
lationship. An approximated value for λ2 is dmin,[26]

and there is a linear relationship between them. In
fact, the algebraic connectivity cannot be solely de-
termined by the degree distribution.[27] It is related
to the network topology. As γ decreases, there is a
saturation-like phenomenon that limits the increase
of λ2. Obviously, γ has much smaller impact on λ2

than dmin does. The relationship among these vari-
ables could be of the form λ2 = dmin · f(γ).

Figure 7 presents the variance of the λ2 at each
sampling point in Fig. 6. The reading of Fig. 7 is the
diversity of the network topology. When γ is near 5,
the graph size is relatively small (see Subsection 4.3),
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so that the networks are star-like and similar to each
other. While near γ = 2.1, the graph size is too large
to offer the diversity. The variance is larger in the
middle part of the figure, which means the algebraic
varies more often in this region. The interpretation is
that the networks of the same power-law distribution
may have quite different topologies.

Fig. 6. Algebraic connectivity versus power-law distribu-

tion parameters.

Fig. 7. The variance of algebraic connectivity.

4.3.Graph size |E(G)|
The convergence speed is related to both the

graph size and the graph topology. Figure 8 shows
how γ and dmin influence the graph size |E(G)|.
|E(G)| is monotonically increasing with γ, as well as
with dmin. The relationship between |E(G)| and dmin

fits very well with straight lines. According to the
degree distribution, b ∼ U [0, 1]. All the elements in
vector b have the expected value E(bi) = 0.5. As a
result, E(di) = dmin · 0.51/(1−γ). Since they are inde-
pendent of each other, the expected value of the total
edge number of the network is

E(|E(G)|) = E(tr(L)) = E

( ∑
di

)
=

∑
E(di)

=
∑

0.51/(1−γ) · dmin

= 0.51/(1−γ) ·N · dmin. (6)

Fig. 8. Graph size versus power-law distribution param-

eters.

4.4.The behaviour of λN and eigenratio

The λN measures the robustness of a network
with respect to delays. The main question is that
whether the attempts trying to increase convergence
speed lead to a considerable decrease in robustness
over time delay. In Fig. 9, although the data are quite
noisy, one can still tell that the increase in γ leads to
dramatic decrease in λN . The change of λN is similar
to that of λ2. It means that the robustness over time
delay declines while the robustness over node or edge
failures increases.

Fig. 9. The λN versus power-law distribution parameters.

As stated in literatures, the largest eigenvalue of
the graph Laplacian can be approximated by dmax +
1.[10] The symbol dmax denotes the maximum degree
value of a node. Due to the power-law distribution,
the average of dmax could be obtained as

〈dmax〉 ' dminN1/(γ−1) exp
[

dγ−1
min

Nγ−2

]
Γ
[
γ − 2
γ − 2

,
dγ−1
min

Nγ−2

]
,

120513-7
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where Γ is the incomplete Gamma function. It fol-
lows the approximation and the simulation that γ has
much stronger influence on λN than dmin does.

The eigenratio is defined as λN/λ2. Since the
second smallest and the largest eigenvalues have sim-
ilar performance, it is necessary to compare them in
a reasonable way. The eigenratio is a measurement of
synchroniability of a network. In Fig. 10 it is observed
that large eigenratio shows up with small γ and dmin.

Fig. 10. The eigenratio of scale-free networks.

4.5.The performance of the discrete

consensus algorithm

The investigation on discrete control law (4) has
led to very similar results. The initial states are set
randomly between 0 and 100. The iterations kc taken
to reach the ε-consensus holds roughly the same shape
as tc does (Fig. 11). See Fig. 12 for the relationship
between iterations and algebraic connectivity. The es-
timated parameters of the reversed power-law function

are kc = 32.5586λ−0.3958
2 . Other relations studied for

continuous algorithm (3) hold similar conclusions with
their counterparts for the discrete algorithm (4).

Fig. 11. Iterations kc taken to reach ε-consensus while

using the discrete consensus algorithm (4). ε = 0.1.

Fig. 12. Iterations versus algebraic connectivity while us-

ing the discrete consensus algorithm (4). The estimated

power-law parameters are Ĉ = 32.5586, β̂ = −0.3958.

5. Conclusion

The relationship between convergence speed of consensus behaviour and scale-free network parameters
is studied in this paper. Both continuous and discrete linear consensus protocols are discussed, which lead to
similar conclusions. The time expense tc to reach ε-consensus is high when the power-law distribution parameter
γ is large, or the minimum degree of each node dmin is small. The algebraic connectivity decreases while γ grows,
and is approximated by dmin. Time cost tc is an reversed power-law function of λ2, as well as the iterations
kc to reach ε-consensus. The algebraic connectivity could be viewed as the internal character of networks on
consensus behaviour. It is demonstrated that the robustness over time delays declines while the robustness over
node and edge failures increases.

Besides the investigation on consensus behaviour, a construction scheme for scale-free networks due to given
power-law distribution is introduced. It follows a reversed thinking: creating the networks from the power laws,
rather than fitting the networks into power laws. The proposed method can provide close-enough samples with
desired power-law distributions.

The future work includes the behaviour of nonlinear consensus protocols over dynamic networks. The
consensus on graphs with positive and negative connection strength will be interesting since such cases are the
real models of the nature and human society.
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