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Adaptive Robust Control for Servo Mechanisms With Partially Unknown States
via Dynamic Surface Control Approach

Guozhu Zhang, Jie Chen, Member, IEEE, and Zhiping Lee

Abstract—In order to achieve high performance control for
servo mechanisms with electrical dynamics and unmeasurable
states, an observer-based adaptive robust controller (ARC) is
developed via dynamic surface control (DSC) technique. To rep-
resent electrical dynamics, a third-order model is used to describe
the servo mechanism. However, the third-order model brings
some difficulties to observer construction and recursive controller
design. To solve this problem, we first transform the model into a
particular form suitable for observer design, and then construct a
parameterized observer to estimate the unmeasurable states. The
state estimation is based on the output and its derivatives, which
can be acquired by an output differential observer. Subsequently,
an observer-based ARC can be developed through DSC technique,
with which the problem of ‘“‘explosion of complexity” caused by
backstepping method in the traditional ARC design can be over-
come. A stability analysis is given, showing that our control law can
guarantee uniformly ultimate boundedness of the solution of the
closed-loop system, and make the tracking error arbitrarily small.
This scheme is implemented on a precision two-axis turntable.
Experimental results are presented to illustrate the effectiveness
and the achievable control performance of the proposed scheme.

Index Terms—Adaptive robust control (ARC), dynamic sur-
face control (DSC), servo mechanism, state observer, two-axis
turntable.

1. INTRODUCTION

HE PERFORMANCE of servo mechanisms is frequently
deteriorated by external disturbances and nonlinearities
(e.g., friction and cogging force). Moreover, there must be some
parametric uncertainties in the plant model due to unavoidable
modeling errors. When designing controllers for servo mecha-
nisms, all the factors mentioned above (i.e., disturbances, non-
linearities and parametric uncertainties) need considering.
Adaptive robust control (ARC) proposed by Yao and
Tomizuka in [1] and [2] combines the advantages of adaptive
control [3] and deterministic robust control (DRC) [4] and
overcomes their practical performance limitations for a reason-
ably large class of nonlinear systems [5]. It has been proved
that for the semi-strict feedback nonlinear systems, the ARC
is not only able to attenuate the influence of disturbances and
nonlinearities, but also to achieve asymptotic output tracking in
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the presence of parametric uncertainties only [1]. In [6], ARC
is successfully applied to a third order servo mechanism, but its
control law is state dependent.

In some cases, partial states of the plant such as motor cur-
rent and angular velocity are unmeasurable, so that state feed-
back control laws will not be applicable. To solve this problem,
the observer-based output feedback ARC is developed in [16]
and [20] by combining state observer with ARC design. Several
applications of the output feedback ARC have been reported. In
[7], an output feedback ARC is developed for a magnetic levita-
tion system. In [8], the observer-based output feedback ARC is
utilized to an epoxy core linear motor whose current dynamics
is negligible. However, these results are merely applicable to the
plants with second-order model, whose structure is suitable for
the observer design. The ordinary third-order models of servo
mechanisms with current dynamics may lead to some difficul-
ties in the observer design. To this issue, a novel model trans-
formation that facilitates the observer construction is proposed
in this paper.

Additionally, the commonly used backstepping technique in
traditional ARC design may result in the problem of “explosion
of complexity”, especially for the plant with order larger than
three [9], [10]. As shown in [6], the state feedback ARC devel-
oped by backstepping approach for a third-order plant is already
quite complicated. If an observer-based ARC is designed, the
computation will be more cumbersome. To eliminate “explo-
sion of complexity” in backstepping design, the dynamic sur-
face control (DSC) method was proposed [10]. The DSC ap-
proach replaces the derivatives at each step of the traditional
backstepping design by some first order filters. Because of its
convenience, the DSC technique has been used in adaptive con-
troller design [11], [12] and state feedback ARC design [13].
In this paper, we use DSC technique to simplify the design of
an observer-based ARC, which is more complicated than the
adaptive controller and state feedback ARC when synthesized
by integrator backstepping approach.

In this paper, the servo mechanisms with current dynamics
and partially unknown states are under investigation. The model
of the servo mechanism is first transformed into a particular
form suitable for observer design, and then a state observer is
designed so that the unknown states can be replaced by their es-
timates. Finally, the DSC technique is used to design the adap-
tive robust controller.

This paper is organized as follows. Dynamic model of the
servo mechanisms and problem formulation are presented in
Section II. The proposed ARC controller is shown in Section III.
The closed-loop system stability is analyzed in Section I'V. Ex-
perimental results are presented in Section V and conclusions
are drawn in Section VI.

1063-6536/$26.00 © 2009 IEEE
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II. DYNAMIC MODELS AND PROBLEM FORMULATION

A. Dynamic Models of Servo Mechanisms

The dynamics of a dc motor servo mechanism can be de-
scribed as [6], [8]

Jq = Tm - Bq - Tfrir,tion(q.) - irdis (1)
where .J is the inertial sum of load and armature, ¢ is the motor’s
output angle, 77, is the electromagnetic torque, Tiiction 1S the
friction torque, Tyis is the disturbance torque, B is the viscous

friction coefficient. In general, Ttiction 1S considered to have the
following form [14]:

Tfriction((j) = [Tc + (Ts - Tc)e_|Q/(IIS|E:| Sgﬂ(q) (2)

In the equation, 75 is the level of the static friction torque, 7,
is the minimum level of Column friction torque, and ¢s and &
are empirical parameters used to describe the Stribeck effect. A
popular simplified model that relates the electromagnetic torque
T, to the input voltage u is given by [15]

T, =Kpi, Ldi/dt+iR+ Kg¢=u 3)
where R and L are the resistance and induction of the armature,
respectively, ¢ is the motor current, u is the input voltage, K
is the force constant, K g is the electromotive force coefficient.
Defining the angle, angular velocity, and current as the state
variables, i.e., [£10, 720, 230]T = [q,q,4]T, from (1)~(3), the
entire system can be expressed in the state space form as

T10 = T2

99 = % [Kpw30 — Brog — Thiction(220) — Tuis]  (4)
. _ "R K 1

Tgo = —LT30 — T2 + TU

In this paper, we assume that the state x1¢ is measureable, while
90 and 3¢ (i.e., the angular velocity and current of the servo
mechanism) are unmeasureable. In order to linearly parame-
terize model (4), the friction torque Tk iction 1S approximated by
the quantity 65, where Sy is chosen as the following differ-
entiable function [8], [21]:

S§ = (2/m) arctan(K,x2), K, > 0. Q)
The parameter K in (5) should be chosen to be a large pos-
itive number, so that the smooth function 675 can approxi-
mate Tiriction With adequately small residual error. The approx-
imating error of 0S¢ is d = Thiction — 075 ¢. Substituting (5)
into (4), we have

Z10 = T20
E90 = —b10T20 + O20230 — O30S (T20) + A (6)
T30 = —040220 — O50230 + Osou

where A = (—Ty;s — d)/J. The definition of 6,0 (i = 1,...,6)
is as follows:

B Kp
10 Ja 20 J’ 30 7

1
; Bap= i B50= 396025-

05 Kg R
L’ L

B. Assumptions and Problem Statement

For simplicity, the following notations will be used: e; for the
1th component of the vector e, e ,;, for the minimum value of e,
and e, for the maximum value of e. The operation < for two
vectors is performed in terms of the corresponding elements of
the vectors.

In general, the parameters of the model cannot be accurately
determined. Thus, we assume, in this paper, that the uncertain
parameters are in certain known intervals, as shown in assump-
tion 1 and assumption 2. In addition, assumption 3 is made for
the desired motion trajectory x14(t).

Assumption 1: 8;9 € [0;0min, 0i0 max], moreover ;9 ymin and
0;0 max are known.

Assumption 2: The disturbance A is bounded, i.e., |A| < é.

Assumption 3: The desired trajectory are continuous and
available, and [z14, Z14, ild]T € ; with known compact set
Qi = {[z14, 810, %1a]" ¢ 27y + 47, + @7, < Bo} C R,
whose size By is a known positive constant.

The control problem of this paper can be stated as follows:
given the desired motion trajectory z14(¢), the objective is to
synthesize a control input  such that the output y = x1¢ tracks
x14(t) as closely as possible in spite of various model uncer-
tainties. Since the servo mechanisms studied in this paper have
partially unknown states, it is necessary to design controllers
which are only dependent on the available states.

III. ADAPTIVE ROBUST CONTROL WITH PARTIAL
STATES FEEDBACK

The method proposed in this paper is motivated by the ob-
server-based ARC developed in [16] and the ARC design via
DSC technique presented in [13]. In order to reduce the dy-
namic uncertainties caused by the unmeasurable states, we first
transform the model into a particular form, and then develop a
parameterized observer to estimate the unavailable states. Af-
terward, an adaptive robust controller relying on the available
states and estimates of the unavailable states is synthesized by
DSC technique. Owning to the DSC approach, the explosion of
complexity in traditional backstepping design is avoided, and
then the proposed controller is less complicated than that devel-
oped by backstepping as in [1].

A. Model Normalization

In order to design a parameterized observer, we transform
model (6) into a normalized form. From the second equation
of (6), we have

20230 = B10220 + 0305 (T20) + T20 — A 7

Substituting (7) into the third equation of (6), we obtain

J.Z’l = T2
jj2 = —011,’2 + 3 — QQSf(QTQ) + A1 (8)
i3 = —0319 — O4is — 055 (22) + Ou + Ao

where

Tl = T10, T2 = T20, L3 = 230020 9
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and

Ay = A, AQ Abs0,01 = 010 = =

, B = 920960 =Le
(10)

According to (10) and assumption 1, there exist ; ,;, and
0; max satisfying 0; € [0; min, 0i max], (¢ = 1,...,6). Further-
more, 0; min and 6; max are functions of ;0 min and ;0 max-
From assumption 2 and the boundedness of 6;, it can be seen
that Ay and A, are also bounded. Therefore, model (8) has the
following properties.

Property 1: 6; € [0;min,Oimax), (¢ = 1,...,
0; min and 6; max are known.

Property 2: |A;| < 61, |Ag| < 62, where 61 and 6o are
known.

6), where

B. Discontinuous Projection

Define the unknown parameter set 6 as 6 =
[01,02,05,04,05,06]" € RC. Let 6 denote the estimate
of # and represent the estimation error (i.e., h=10-— #). The
discontinuous projection operator is defined as [17]

0, if H:Z = 0; max and @ > 0
PI‘Ojé(O) = 0, if f; =0;minand e <0
e, otherwise.

(1)

If the adaptation law is given by § = Pro jp(I'T), where I is a
diagonal positive definite matrix, then for any adaptation func-
tion 7, the projection mapping used in (11) assures [18].

P1If 6(0) € Qg, then

é € Q= {é : emin < é < emax} (12)
where O = (01 mins - - > O6min)”T and Opax =
[61 maxs -+ - 96 max]T~

P2
87 (I *Proj,(T't) — 1) <0, Vr. (13)

C. Design of the State Observer
The last two equations of model (8) can be rewritten as
i’ = Agf =+ (k‘ — 6191 — 6293)1}2 — (6102 + 6295)Sf($‘2)

AI} (14)

— e204%9 + eafu + {Az

= [1/ O]T, k= [kh kQ]T, and
| =k 1
n=[]
Then, by suitably choosing k, one can synthesize the ob-

server matrix Aoy with arbitrarily fast convergence rate. Thus,
there exists a symmetric positive definite matrix P such that

where 7 = |72, 73]7, €1

PAy+ AT P = —1I, P = PT > 0. Following the design pro-
cedure of [3], one can define the following K-filters:

o = Agéo + kzai &1 = Aoky — e1ma;

§2 = Aol — €157 (22); &3 = Ao&s — eaa;
o= Aoy — €223 &5 = Aos — €25y (22);
&6 = Aoe + eau.

According to the above equations, since e1x2 = Agesxs, kxo =
k161$2 + k262$2, and e1 Sf = A062Sf, we know that 51, 52 and
&4 can be computed in the way described below:

& = Apéa; &o = —k1&1 — ka3; Lo = Apés.
Therefore, the K-filters can be simplified as

€3 = Aoés — e2m2;: &4 = Aols — eaiba;
&5 = Aols — eaSy(x2); &6 = Ao&e + eau;

&= A0§3;650 = —k1&§1 — k2835 €2 = Aoés; (15)
r="E&+ Y Oiki.
i=1
Then, the states of (14) can be rewritten as
6
T=(o+ Y il + e (16)

i=1

where e, is the estimation error. From (14) and (16) we know

that €, = Age, + [A1, As]T. The solution of this equation is
Er = €0 tena (17
where ¢ is the zero input response of equation g = Ageg and

EA = fg et [A, Ay]Tdr for t > 0. Noting property 2
and that matrix Ag is stable, one has

lex| < 6- (18)

where 6. is a vector of unknown but bounded functions.

D. Output Differential Observer

The variables z2 and %5 in the right-hand side of model (8)
represent the angular velocity and acceleration of the servo
mechanism, respectively. In the ideal case, zo and x5 can
be computed by differentiating the output angel z;. However,
because the differential operator is sensitive to noise, the deriva-
tive of the output angle cannot be used directly. Therefore,
the output differential observer [19] shown in (19) is used to
estimate the angular velocity and acceleration

Ty = ig + 01(371 - i1)
Ty = T3+ ag(r1 — 27)
Ly = as(z1 — &)

19)

Let 1 be the input and Z; be the output, the transfer function
of the output differential observer is

Z1(s) _
z1(s)

The pole placement method can be used to adjust the band-
width of (20), so that £; can track x; in any prescribed rate.
Then, Z, and £ will track z» and &2 with desired fast response,
respectively.

a132 + ass + a3
s34+ a152 + ags + as

(20)



726 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 3, MAY 2010

E. Recursive Controller Design via DSC

The design combines the DSC method with the ARC design
procedure. In the following, the unmeasurable state x3 is re-
placed by its estimates and the estimation errors are handled by
robust feedback to achieve a guaranteed robust performance.

Step 1: First, a dynamic surface is defined as

S1=¢1 +kper = Ty — Taeq, T2eq i= T1q4 — kper  (21)
where e; = &1 — 214(t) is the output tracking error, k, is any
positive feedback gain. Since Gs(s) = e1(s)/S1(s) = 1/(s +
k'p) is a stable transfer function, if .Sy is small or converges to
zero exponentially, the output tracking error e; will be small
or converge to zero exponentially too. Differentiating (21) and
noting (8), we have

Sl = — G122 + T3 — 625]0(.”172) + A — jj?e.q

=30+ &0+ 0662+ enn+ A1 — T2y (22)
where vy = [£12 — 2,622 — Sf(72),63.2,€4,2,&5.2,0]7. In
the following, we use the ARC approach proposed in [2] to cope
with the parametric uncertainties and uncertain nonlinearity A,
4,2 in (22). If the filter state &g » were the actual control input,
one could synthesize for it a virtual control law &5 as follows:

Q2 = Q2q + Q2s;

Qg = (-%Té — o2 + j72f=,q> /06;
Qs = Qigg1 + Q52 + (2433

@251 = —k2551/06 min

(23)

where as, is the adaptive control term and @, is the robust
control term, ko is a positive design parameter. In (23), @2 is
selected to satisfy the following condition:

S1(A1 + Ogtiogn) < €21 (24)
and a3 1s any continuous function satisfying
Si(ez,2 + Ostas3) < 52,253 (25)

where €5 1 and €3 » are positive parameters to be chosen. Intro-
duce a new variable a5 and let @, pass through a first-order filter
with time constant 7o to obtain ao
Tollg + iy = Qua, 042(0) = 5[2(0). (26)

Essentially, (24) shows that aia40 is synthesized to attenuate
the effect of uncertain nonlinearities with known bound (i.e.,
A1) to the level of control accuracy measured by €2 1. Similarly,
it can be seen from (25) that 2,3 is used to counteract the effect
of state estimation error ¢, ».

Step 2: The second dynamic surface is defined as

Sy = 6,2 — a2 27
From (15) and (23), the derivative of S5 is
Sy = —kobe1 +u— (G2 — a2) /T2 (28)

The control input u, which consists of two parts, is design as
follows:

{ U= Ug + Us; Us = —k3552 (29)

U = kabs 1 + (@2 — aa)/Ts — 065,

where u, is the adaptive control term; u is the robust control
term.

Step 3: The adaptation law to update the parameter estimates
is chosen as

6 = Projy(T7); 7= @uSi;
Yo = [€1,2 — 2,822 — S§(w2),€3,2,8a,2,€5,2, 52 + 5é2a,]T .
(30)
Remark 1: One smooth example of qaso satisfying (24) can
be found in the following way. Let ho be any smooth function
or constant satisfying

hy > 63 €)Y
Then, ca42 can be chosen as [1], [2]
ho

(og9 = —————57. 32

2s2 406 min€2,1 ! (32)

Similarly, an example of a3 satisfying (25) is given by [20]
1

Qg3 = ———S57..

33
406 min€2,2 (33)

Other smooth or continuous examples of @y52 and a3 can be
worked out in the same way as in [6]-[8].

IV. STABILITY ANALYSIS OF THE CLOSED-LOOP SYSTEM

Define a scalar y- as

Y2 = a2 — Qa. (34)
From (23) and (26), the derivative of y» is
QQZ_%+i T9+9T 02 . HTZ&me
T2 fg 9Ei 2 ‘
: . 80625 06 _
+&o,2 — 3726(1) T —81 + = G ——0q. (35)

All terms in (35) can be dominated by some continuous func-
tions, therefore, we have
(36)

U2 + < Bs(S1, 89, y2,0, %14, %14, F1a)

where By is a continuous function. Then, the following in-
equality can be obtained:

Y2
Y292 + 2 <

2

Y22 + < Balys|. 37

Thus

2
y2@2§—%+32|112|3——+ + = B%- (38)
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From (22), (23), (27), (30), and (34), 5’1 can be derived as

S1=@F0+ €02+ 06(y2 + @2 + S2) + €p2 + A1 — diaeq

~ 0
= —@59—]%5 ¢

6 min

+ Os(@2s2 + @253 + Y2) + éGSQ-

Si1+ezp+ A
(39
Then, we have

8181 = — kos(06/06 min) ST — 9L 0S1 + (Bsazss + A1)S:
+ (Os2s3 + €2,2) 51 + O6y2S1 + 065152
< — ks ST — SDaTHNSl +e21 + E2,253

+ 06 max (S +92) /2 + 065152 (40)
From (28) and (29), it follows that
Sy = =051 — ks Sa. (41)
Then, we obtain
538y = k3,82 — 065155. (42)

Before the main result of stability is given, the sets and values
which will be used in the stability proof are defined below. For
any p > 0, define

= {(51752731279) V() < p}
where

1 1 1 1~ ~
V(t)= =S+ -S2 4+ —y2 + 07T 14. 4
(t) gP1 T 592 T oY+ 5 (43)
Obviously, IT is a compact subset in R?, hence there must be a
point corresponding to the supreme value of By in II. We denote
this supreme value as M, that is

By < Ms. (44)

Theorem 1: Considering system (6), if the control law is (29),
adaptation law is (30) and assumption 1 ~ 3 are satisfied, then
for any initial states in II, there exist positive parameters ko,
k3s, T2, €2.1, and €2,2 Satisfying

ao — figss > ag
k3s Z &%)

1 1 _ B6max

) 1 2 2 @o
dag >0

(45)

such that all signals of the closed-loop system are uniformly
ultimately bounded and the steady-state tracking error can be
made arbitrarily small.

Proof: Considering the positive definite function V (¢) in
(43), from (30), (38), (40), and (42), the derivative of V' (¢) can
be found as follows:

V= 5131 + SQS’Q + Y292 + or—149
< — koS — L0S) + €21 + 62,253 + 06515

S? + 3

2
A 1
+ 96max - k3sS§ - HGSISQ - :;1__2 + y%
2

1 e p
+ZB§+0F 'Projs(FpaSh)- (46)

Noting (13) and (44), we have

V< - kos ST — @aTé51 + 01 +E2202 + 065155

G2 4 42 . 2
LYY g 52 66518, — L2
2 T2

+ 96 max

1 N
+y2+ ZM% + 070,51

Hmax 1 emax
- (o P s (L1 )

~ ~ 1
k3483 — ol T 710+ M + a1 + €207

+ apfTT4. (47)
Define a positive number R satisfying
1
Ry = ZMZZ + €91 + 2262 + agMp (48)

where My = (Oimax — Omin) ' T (Ornax —
(45) and (48) into (47) yields

O min)- Substituting

V < —2a0V + Ry. (49)

Let

oo > Ro/(2p) (50)
then V < 0onV = p. Thus, V < pis an invariant set, i.e.,
if V(0) < p, then V(t) < p for all ¢ > 0. Therefore, V'(t) is
bounded, so does S1, S, ¥2, and 6.
Define a positive definite function V;, satisfying
1 1 1

Vo(t) = 5Sf + 5522 + §y§. (51)
In order to made a contradiction, we assume that there exist
T > 0, so that whent > T

R
Va(t) > — +¢

20[0 (52)

where ¢ is an arbitrary positive number and R is given by

R = (1/4)M5 + €31 + €226 (53)
From (45), (47), (51), and (53), we know that
V(t) < —2a0V, + R. (54)
Multiplying —1 to both sides of (54), yields
209V, — R < V. (55)

Integrating (55) over [0, t], we have
t

() = /anvn(T) _RAr < V() - V(D).  (56)

Due to the boundedness of V' (¢) proven above, the function f ()
is upper bounded. From (52) and (56), it can be seen that f(t) is
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Fig. 1. Structure of the two-axis turntable servo system.

monotone increasing. Therefore, f(¢) has a finite limit as ¢ —
oo. The second-order derivative of f(¢) is

f(t) =200V (£) = R = 2019(S151 + S22+ ya1j2) — R. (57)

Because of the boundedness of S1, S2, y2, and 9~, together with
(37), (40), (42), and (44), f(t) is also bounded. According to the
Barbalat’s lemma, we obtain that

lim f(t) = Jlim 200V,,(t) - R = 0. (58)

t—oo

It is obvious that (58) contradicts with (52), hence we have

Va(t) < i +e, Vi>T. (59)
20[0
Note that ¢ can be chosen arbitrarily small. From (59), we know
that y2, S1, and So are uniformly ultimately bounded. Noting
Property 2 and (12), it is obvious that 6 is uniformly ultimately
bounded. Furthermore, z1, 2, o, and # are also uniformly ul-
timately bounded. From (45) and (53), we can see that, for any
given constants 0gp,q., Mo, and 6., R/ag can be made arbi-
trarily small by properly choosing ka5, k3s, T2, €2,1, and €2 5.
This implies that the steady-state tracking error can be made ar-
bitrarily small. O

Remark 2: In theorem 1, we investigated the systems with
initial conditions satisfying V'(¢) < p. It implies that all related
variables must be in a ball of radius /2p at the initial time.
However, since p can be arbitrarily large, the condition V' (¢) <
p is not really restrictive.

Remark 3: The inequality (45), (50), and (53) provide a
guideline to tune the parameters &y, k35, T2, €2,1, and €3 » for
the designer. If ko5 and k34 increase, or 72 decrease, then «y
increase and R/ay is subsequently reduced. If e5 1 and €29
decrease, then R decrease and consequently R/« is reduced,
which leads to smaller tracking error for the system.

Remark 4: 1f adaptation is removed from the controller, i.e.,
I' = diag[0,0,0,0,0, 0], then from (45) and (46) we know that

3 9 max
V, < — <k25 - "‘2 )S% — k3,52

1 96 max 2
Y N
(Tz 2 ) Ya

Servo Controller

L1
4

< — 200V, + R — ¢145,.

M3 4691 4 2282 — 068,
(60)

The last term of the right-hand side of (60), i.e.,—npaT 551, which
may steer V,, to infinity, can be regarded as the influence of pa-
rameter uncertainties. For ARC, this deleterious effect could be
completely cancelled by the adaptive control term. From (60),
we know that if # = 0 the controller without adaptation is still
able to achieve ultimately uniform boundedness. Actually, the
first two design steps of the proposed ARC are coherent with the
design procedures of a deterministic dynamic surface controller
(DDSC) for plants with partial unknown states. In the following
section, the proposed ARC and the DDSC will be investigated
and compared by experiments.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

To demonstrate the effectiveness of the proposed ARC, a
two-axis turntable servo system is set up as a test-bed. As shown
in Fig. 1, the test-bed consists of five major components: a two-
axis turntable, optical encoder, PWM amplifiers, a servo con-
troller, and a host PC. The resolution of the optical encoder is
0.0005 degree. The two axes of the turntable (i.e., yaw axis and
pitch axis) are mounted orthogonally. They are driven by two
dc torque motors. respectively.

The controller of the servo mechanism is implemented
through an Xpc target that consists of a target personal com-
puter and the interface card NI PCI-6052E. The sampling rate
of the servo controller is 2 kHz, a value in common use for
servo mechanisms.

B. Design of the Controllers

In the experiments, only yaw axis is used. Model (8)
is utilized to describe the dynamics of the yaw axis.
Identification is performed to obtain the parameters,
whose values are shown in Table I. According to (10), the
parameters of model (8) can be computed, and then we

have: 6 = [9.091,52.4, 1095, 98.04,5133.7, 11337] 7.
The bounds of the parameters can be chosen as
Omin = [5, 50, 1000, 80, 5000, 10000]7;  Omax =
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TABLE 1
PARAMETERS OF THE YAW AXIS

Parameters Quantities
J(kg-m2) 0.011
R(Y) 5.0
L(H) 0.051
05(N) 0.576
Kpr(N/A) 6.36
Kg(V/m/s) 0.018
B(N/m/s) 0.1

[12, 60, 1200, 100, 6000, 13000]7.  According to the pa-
rameters of the plant model, the following two controllers are
design.

1) Adaptive Robust Controller (ARC): Based on the design
procedures introduced in Section III, the controller is designed
as follows. All the roots of the state observer eigenvalue poly-
nomial are placed at s = —200, which leads to k; = 400 and
ks = 40000. The parameter K in the approximating function
Sy is chosen as K; = 900. As mentioned in Remark 3, if the
controller parameters k,, ka5, and k35 are increased, or the pa-
rameters 7o, €2,1, and €2 o are reduced, the tracking error will
be decreased and the transient response would be accelerated.
However, every physical plant has a bandwidth limit and satu-
ration nonlinearities. If the parameters k,,, ko,, and k3, are too
large, the system may be suffered from the saturation nonlineari-
ties and bandwidth limit. On the other hand, if the parameters 72,
€92,1,and €2 » are too small, the system might be excessively sen-
sitive to noise. With consideration of these issues, we tune the
parameters of ARC, and obtain the following parameter values:
kp = 50, kos = 500, k3s = 300, 7 = 0.2, €57 = 0.005,
€22 = 0.005, and hy = 1, where hy is corresponding to the
level of disturbance as stated in Remark 1. The adaptation rate
is chosen as I' = diag[5, 50, 100, 10, 100, 500]. The initial pa-
rameter estimates are 6(0) = [5, 50,1000, 80, 5000, 10000]7".
All the poles of the output differential observer are placed at
—100, so that we obtain a1 = 300, as = 3 x 10%, a3 = 1 x 106.

2) Deterministic Dynamic Surface Controller (DDSC): The
same control law as the ARC designed previously but without
adaptation, i.e., letting I' = diag]0, 0, 0,0, 0, 0].

For engineering applications, the ARC is more complicated
than the DDSC in computation, because the ARC utilizes adap-
tation law which is not used in the DDSC. However, the adap-
tation law enables the ARC to achieve more favorable tracking
performance than the DDSC as is shown in the following exper-
imental results.

C. Experimental Results

In order to compare the two controllers in quantity, the fol-
lowing performance indices will be used [21], [22].

(A1) Lole] = 1/(1/Ty) Ji” le(t) 2dt. the Ly norm of the
tracking error, is used as a measure of average tracking
performance, where T represents the total running
time.

ey = maxy |e(t)|, the maximum absolute value of
the tracking error, is used as a measure of transient
performance.

a2

TABLE 11
TRACKING PERFORMANCE FOR THE 1 Hz SINUSOIDAL TRAJECTORY
Controllers en(deg)  Lole] (deg) e (deg)
(set 1) ARC 0.0123 0.00803 0.00859
(set 1)DDSC 0.0171 0.0107 0.0170
(set 2) ARC 0.0164 0.00881 0.0143
(set 2)DDSC 0.0187 0.0116 0.0172

ARC i

Tracking error (deg)

Time (sec)

Fig. 2. Tracking errors for sinusoidal trajectory x4 = 10 sin(2xt).

(I3) er = maxy, _ar<i<r, |e(t)], the maximum absolute
value of the tracking error during the last two periods
of the experiment, is used as a measure of final tracking
accuracy for periodic trajectories with a period T'.

1) Case I: Since the influence of friction nonlinearity, distur-
bance (ripple torque) and sensor noises is more notable at low
speed, to test the robustness of the controllers, we just let the
yaw axis track a slow sinusoidal signal in this case. The desired
trajectory is selected to be 24 = 10sin(27t), which means a si-
nusoidal input with an amplitude of 10 degree and a frequency
of 1 Hz. The following test sets are performed.

Set 1) The yaw axis tracks the slow sinusoidal trajectory
without external disturbance added.

Set2) To further verify the robustness to the external distur-
bance, an electrical signal 0.2sin(27t) (V) is added to
the control input. We just use this electrical signal to sim-
ulate a sinusoidal disturbance torque added to the yaw
axis.

The experimental results in terms of performance indices are
given in Table II. As seen, ARC achieves a better tracking per-
formance than DDSC, since all the indices (i.e., epr, L2[e], and
er) of ARC are less than those of DDSC.

For Set 1, the tracking errors are shown in Fig. 2. It shows
that the tracking error of ARC decrease gradually due to adap-
tation, while the DDSC has a larger tracking error with constant
magnitude. The parameter estimates are shown in Fig. 3. It can
be seen that the parameter estimates never run out of the pre-
scribed bound for the use of projection operator. There is no
guarantee that the parameter estimates will converge to their true
values, because our trajectories do not usually provide enough
persistent excitation and the adaptation is very slow when error
is too small. Although parameter estimates do not necessarily
converge to their values, as seen from Remark 4 and Fig. 2, the
parameter adaptation is able to cancel the adverseness of param-
eter uncertainties and improve the tracking performance. For Set
2, the tracking errors are given in Fig. 4. As we can see, the
added sinusoidal disturbance does not affect the performance of
ARC much. That is because the robust control term of ARC can
attenuate the influence of external disturbance effectively.
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Fig. 3. Parameter estimation of ARC under sinusoidal excitation.
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Fig. 4. Tracking errors for sinusoidal trajectory x4 = 10 sin(2#t) under the
influence of added disturbance.
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Fig. 5. Point-to-point motion trajectory.

2) Case 2: To demonstrate the tracking performance, the
test-bed is then commanded to track a point-to-point motion tra-
jectory shown in Fig. 5. Following this trajectory, the yaw axis
of the turntable will rotate clockwise and counter clockwise be-
tween the position of 0 degree and the position of 4 degree, with

0.02 ‘ ? ARC' : :

0.01

0

0.02 : ,
0.01 : ’

Tracking error (deg)

-0.01
0

Time (sec)

Fig. 6. Tracking error of point-to-point trajectory.

TABLE III
TRACKING PERFORMANCE FOR THE POINT-TO-POINT TRAJECTORY
Controllers eps(deg) Lo[e|(deg) er (deg)
ARC 0.00931 0.00291 0.00630
DDSC 0.0131 0.00472 0.0119

Est. 0,

Est. 0,

Est. 63

Est. 6,

Est. 65

13000

12000 -

(1] 5 10 1 20 25 30
Time (sec)

Est. 0

Fig. 7. Parameter adaptation under point-to-point trajectory excitation.

a top velocity of +4 deg/s and a top acceleration of 10 deg/s”.
The tracking errors of both controllers are shown in Fig. 6. The
performance indices are given in Table III, which demonstrates
that the ARC has better tracking performance than the DDSC.
That is because of the parameter adaptation of ARC, which is
shown in Fig. 7. As seen, the parameter estimates are within
the prescribed bound owning to the projection operator. In this
case, parameter adaptation appears faster than that of Case 1 for
a better excitation of point-to-point trajectory.

VI. CONCLUSION

In this paper, an ARC scheme based on state observer was
presented for the servo mechanisms with unknown states, para-
metric uncertainties and disturbances. The problem of “explo-
sion of complexity”, which usually exists in the ARC designed
by traditional backstepping approach, is overcome by dynamic
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surface control technique. The proposed ARC utilizes param-
eter adaptation to eliminate the influence of parametric uncer-
tainties and uses robust control terms to attenuate the influence
of disturbances. It was proved that all signals in the closed-loop
system are uniformly ultimately bounded, and that the tracking
error can be made arbitrarily small by adjusting the parameters
in the control law. In addition, the theoretical-analysis results
were verified through experimental results. Future work will be
focused on the extension of the proposed ARC to the multi-ob-
jective control [23].
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