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Abstract This paper presents extensive experiments on a hybrid optimization algorithm (DEPSO) we recently

developed by combining the advantages of two powerful population-based metaheuristics—differential evolution

(DE) and particle swarm optimization (PSO). The hybrid optimizer achieves on-the-fly adaptation of evolution

methods for individuals in a statistical learning way. Two primary parameters for the novel algorithm including

its learning period and population size are empirically analyzed. The dynamics of the hybrid optimizer is

revealed by tracking and analyzing the relative success ratio of PSO versus DE in the optimization of several

typical problems. The comparison between the proposed DEPSO and its competitors involved in our previous

research is enriched by using multiple rotated functions. Benchmark tests involving scalability test validate that

the DEPSO is competent for the global optimization of numerical functions due to its high optimization quality

and wide applicability.
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1 Introduction

The global optimization of numerical functions is one of the most important generic topics in scientific and

engineering researches since many problems can be depicted in its forms. In a recent paper published on

the journal Sci China Ser F-Inf Sci [1], we proposed a novel hybrid optimizer for the global optimization

of numerical functions. The optimizer was designed with the purpose of combining the advantages of

two powerful population-based metaheuristic algorithms—differential evolution (DE) and particle swarm

optimization (PSO) [2, 3]. Our preliminary research shows that the hybrid optimizer is effective and

competent for numerical optimization. The goal of this paper is to provide a comprehensive validation

of the proposed algorithm and make a detailed analysis of its parameter setting and evolution dynamics.

The rest of this paper is organized as follows. In section 2, a brief introduction on the PSO and DE

optimizers for hybridization is provided for ease of comprehension of the proposed DEPSO algorithm.
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In section 3, the proposed hybrid algorithm is presented. Its parameter setting and evolution dynamics

are analyzed in the optimization of several representative functions. In section 4, numerical experiments

based on a test suite, composed of 10 scalable benchmark problems of different features, are implemented

to compare the performances of different optimizers. Section 5 concludes the paper.

2 A brief introduction on PSO and DE

2.1 Particle swarm optimization

The particle swarm optimizer used here for the hybridization is a variant of PSO with constriction factor

(PSO-cf) whose iteration equations are shown as follows [2]:

vd
i (k + 1) = χ ∗ [vd

i (k) + c1 ∗ rand1d
i ∗ (pbestdi (k) − xd

i (k)) + c2 ∗ rand2d
i ∗ (nbestdi (k) − xd

i (k))], (1)

xd
i (k + 1) = xd

i (k) + vd
i (k + 1), (2)

where the subscript i is the indication of the ith particle (i = 1, 2, . . . , PS; PS is population size); the

superscript d is the indication of the dth dimension; the index k is the indication of the kth genera-

tion; xi = (x1
i , x

2
i , . . . , x

D
i ) and vi = (v1

i , v2
i , . . . , vD

i ) are the position and velocity of the ith particle,

respectively; χ is the so-called constriction factor proposed by Clerc and Kennedy [2]; c1 and c2 are

acceleration coefficients; rand1d
i and rand2d

i are random numbers uniformly distributed in the inter-

val [0,1]. pbesti = (pbest1i , pbest2i , . . . , pbestDi ) is the best position found so far by the ith particle;

nbesti = (nbest1i , nbest2i , . . . , nbestDi ) represents the best position found by the particles in the neigh-

borhood of the ith particle. Different neighborhood topologies correspond to different PSO versions [4].

The topology applied here is the well-known von Neumann topology suggested by Kennedy and Men-

des [4] in which each particle has four neighbors on a two-dimensional lattice (left, right, above and

below).

Improvement strategies which give birth to more advanced PSO variants can be largely categorized

into the following five types:

1) parameter tuning (e.g., time-varying inertia weight and acceleration coefficients [5] and dynamic

population sizing and management [6]);

2) topology tuning (e.g., employing well-balanced Lbest topologies [4] and dynamic topologies [7]);

3) tuning of learning patterns (e.g., the comprehensive learning strategy in [8] and the fully informing

strategy in [9]);

4) multiple-swarm strategies [10, 11];

5) hybridization strategies [12, 13].

Note that some complicated PSO variants may adopt multiple strategies above simultaneously. The

improvement strategy adopted in this paper belongs to the final type—hybridization. A recent standard

PSO algorithm for performance comparisons acknowledged by PSO community is the SPSO2007 available

on the Particle Swarm Central: http://www.particleswarm.info.

2.2 Differential evolution

The differential evolution proposed by Storn and Price [3] is also a formidable population-based optimizer.

It has three operators—mutation, crossover and selection. The mutation in DE is a distinct innovation.

It is based on the difference of different individuals (solutions). A general notation for DE is DE/x/y/z

where x specifies the base vector to be mutated, y is the number of difference vectors used, and z denotes

the crossover scheme [3]. The most classical DE variant is DE/rand/1/bin. In this DE variant, for the

mutation of the ith individual in the DE population {xi|i = 1, 2, . . . , PS}, three different individuals xr1,

xr2 and xr3 with r1 6= r2 6= r3 6= i will be randomly (rand) chosen from the population to generate a

new vector. The new vector can be expressed as follows:

zi = xr1 + F ∗ (xr2 − xr3), (3)
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Table 1 Pseudocode for proposed DEPSOa),b)

Generate a uniformly distributed random population P = {xi | i = 1, 2, . . . , PS} within the whole search range;

Set Pr = 0.5 and the generation record k = 0; Set the records NPSO
s , NPSO

f
, NDE

s and NDE
f

at zero;

Do k = k + 1

For i = 1 to PS

If rand < Pr Evolve the ith individual (particle) with PSO:

Change xi according to (1) and (2); if certain components of xi exceed search bound, set them to

the bound and force corresponding velocity components to be zero; evaluate f(xi); if f(xi) is better

than f(pbesti), update pbesti with xi; if f(xi) is better than the current discovered best objective

value, let NPSO
s = NPSO

s + 1, otherwise let NPSO
f

= NPSO
f

+ 1; and update the nbest of all

neighbors of this individual if the fitness of nbest is improved;// f(·) is the objective function.

Else Evolve the ith individual with DE:

Apply differential mutation within the scope of the personally best positions of all particles, and

crossover to pbesti according to (3) and (4), to get a trial vector ui; if certain components of ui

exceed search bound, set them to the bound; evaluate f(ui); if f(ui) is better than f(pbesti),

update pbesti with ui; if f(ui) is better than the current discovered best objective value, let

NDE
s = NDE

s + 1, otherwise let NDE
f

= NDE
f

+ 1; and update the nbest of all neighbors of this

individual if the fitness of nbest is improved;

End if

If a learning period is over, make a statistical analysis as follows:

If NPSO
s + NDE

s == 0 // This means neither PSO nor DE makes contribution to

fitness improvement.

Set Pr at 0.5; // A fair chance for PSO and DE to be employed

Else

If NDE
s + NDE

f
== 0 Set Pr=1; End

If NPSO
s + NPSO

f
== 0 Set Pr=0; End

If NDE
s (NPSO

s + NPSO
f

) + NPSO
s (NDE

s + NDE
f

) 6= 0

Compute the relative success ratio (Pr) of PSO versus DE according to (5);

End

End if

Set the records NPSO
s , NPSO

f
, NDE

s and NDE
f

at zero;

End if

End for

While termination criteria are not satisfied

a) Instructions for symbols used in this table can be found in sections 2 and 3;

b) The procedure presented here is slightly different from that in our previous research. The learning period is

now related to the accumulated number of function evaluations instead of the number of generations. The subroutine of

statistical learning is placed into the inner loop of the whole procedure. This modification provides more opportunities for

the adaptation of evolution methods.

where F is the so-called scaling factor which is a positive constant usually chosen from the interval (0,1).

After mutation, a binominal (bin) crossover operates on the vector zi and the individual xi to generate

the final vector ui in the following way:

ud
i =

{

zd
i , if randd

i 6 CR or d == rni;

xd
i , otherwise,

(4)

where xd
i , zd

i and ud
i are the dth dimensional components of the vectors xi, zi and ui, respectively; CR is

the predefined crossover probability; rni is a number randomly selected from the index set {1, 2, . . . , D}

and used to ensure that the trial vector ui is different from the original solution xi. Finally, ui will be

compared with xi, and the better one will be selected as a member of the DE population for the next

generation.

The categories of improvement strategies for DE are quite similar to those for PSO. Readers interested

may refer to [3] and [14] for advanced DE variants.
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3 A novel DEPSO

3.1 The idea of statistical learning

The DEPSO we proposed here adopts a statistical learning strategy which selects the evolution method

for each individual according to the relative success ratio of alternative methods in a previous learning

period. If the discovered best objective value is improved by PSO, the success number of PSO is increased.

Otherwise, the failure number of PSO is increased. This rule is same for DE.

Denote by NPSO
s and NPSO

f , respectively, the success number and failure number of PSO in a learning

period, and by NDE
s and NDE

f the DE counterparts. The relative success ratio of PSO versus DE, that is,

the probability of choosing PSO as the evolution method for an individual, can be expressed as follows:

Pr =
NPSO

s (NDE
s + NDE

f )

NPSO
s (NDE

s + NDE
f ) + NDE

s (NPSO
s + NPSO

f )
. (5)

The performance of PSO and DE may vary with search stages. They may fit respectively diverse

requirements on the tradeoff between exploration and exploitation at different search stages [15]. Our

motive is to use the fitter method to implement the search of problem space in different stages. The

statistical learning here is de facto an adaptation of search methods by feedback from the current state

of search [16].

The pseudocode for the DEPSO is presented in Table 1. One of the most important parameters for

the proposed DEPSO is the length of its learning period (denoted by LP ). When the accumulated

number of function evaluations is divided exactly by LP , which indicates the end of a learning period,

the performance of PSO and DE during the last learning period including LP function evaluations will be

statistically analyzed. The relative success ratio of PSO versus DE obtained from the statistical learning

will be utilized to guide the adaptation of evolution methods in subsequent learning period. Another

important parameter for the DEPSO is the population size, denoted by PS, which is very common for

all population-based metaheuristics such as PSO and DE. In the following, we will make an integrated

analysis of the two key parameters by comparing the performance of the DEPSO in the optimization of

several representative functions.

3.2 Parameter setting: LP and PS

In order to achieve a rational and effective parameter setting for the proposed DEPSO, we made a

preliminary test to analyze the effects of the two key parameters LP and PS on the performance of the

optimizer. Taking into account the possible coupling effect of the two parameters, we chose different

combinations for their settings. The setting of population size includes PS = 10, 30, 50, 100, 300 and

1000. For the length of learning period, we considered LP = 50, 100, 300 and 1000. In addition, a very

small LP like LP = 10 is usually insufficent to ensure a convincing and reliable statistical result, so it is

not involved in our comparative analysis. Therefore, there are totally 6 × 4 = 24 different combinations

of the two parameters compared in the following experiment. We used four representative functions of

different features as a test suite. The expressions for these functions are presented as follows:

1) Sphere function: f1(x) =
∑D

i=1 x2
i , x = [x1, x2, . . . , xD] and x ∈ [−100, 100]D.

2) Rosenbrock function: f2(x) =
∑D−1

i=1 [100(xi+1 − x2
i )

2 + (1 − xi)
2], x ∈ [−30, 30]D.

3) Rastrigin function: f3(x) =
∑D

i=1[x
2
i − 10 cos(2πxi) + 10], x ∈ [−5.12, 5.12]D.

4) Schwefel function: f4(x) = 418.98289 ∗ D −
∑D

i=1 xi ∗ sin(
√

|xi|), x ∈ [−500, 500]D.

The minimal values of the above functions are all zero. For illustration, the landscapes of two-

dimensional versions of the four functions are depicted in Figure 1. Note that the dimensional increase of

these scalable functions does not change their basic features. The Sphere function is a simple unimodal

function. The Rosenbrock function is a unimodal-like function whose landscape contains a banana-shaped

valley around its optimum [8]. The Rastrigin function is a multimodal function with a rugged landscape

and large numbers of local optima. Note that its local optima are regularly distributed on a unimodal

bottom envelope and it is categorized as a single-funnel function in [17]. The Schwefel function is also
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Figure 1 An illustration for 2-dimensional landscapes of four test functions. (a) 2D Sphere function; (b) 2D Rosenbrock

function; (c) 2D Rastrigin function; (d) 2D Schwefel function.

a multimodal function but it has a multi-funnel landscape [17]. There are many highly attractive local

optima far apart from its global optimum in its landscape. Multi-funnel functions are usually regarded

to be much harder to optimize than single-funnel functions.

In this test, we chose three different dimensions, including D = 2, D = 10 and D = 30, for these

test functions to take account of the effect of problem dimension on population size. In each case, the

optimizer will be terminated when the maximal number of function evaluations (denoted by NFEmax)

is reached. It was observed in the experiement that the DEPSO was more sensitive to PS than LP . In

most cases, PS = 30 is a good choice for the optimizer’s population sizing. The DEPSO with PS = 30

performs obviously better than its counterparts with other population sizes. However, a smaller PS

benefits the DEPSO in the optimization of the simple unimodal Sphere function. This is because a

smaller population size favors fast convergence on unimodal landscapes. In fact, a better strategy for

the optimization of unimodal functions is to adopt gradient descent methods which can make best of

acquired information. Here, we mainly care about the performance of optimizers in the optimization of

complicated multimodal functions.

In the optimization of 10D and 30D multi-funnel Schwefel functions, the best results correspond to

PS = 50 and PS = 100, respectively. Larger population sizes such as 300 and 1000 did not produce

satisfactory results in all cases. Given limited iteration numbers (i.e., time resource), overlarge population

sizes often result in slow convergence since each individual cannot be sufficiently evolved. In essence,

the selection of population size depends on the problem-dependent tradeoff between exploration and

exploitation [15]. In addition, it was also observed that the change of LP has no obvious effect on

the DEPSO’s performance if its population size is properly chosen. The setting LP = 100 has slight

advantages over other settings (LP = 50, 300 and 1000), and therefore we set LP at 100 in subsequent

comparative experiments.

The online change of the relative success ratio of PSO versus DE in the optimization of 2D test func-

tions (f1 ∼ f4) is depicted in Figure 2. From the four curves of success ratio shown in Figure 2, it is easy

to see that the PSO method usually fits the evolution of individuals at early stages. In contrast, DE of-

ten has more contribution to the improvement of discovered best objective values at later stages. The ada-
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Figure 2 Dynamics of the proposed DEPSO. (a) 2D Sphere function; (b) 2D Rosenbrock function; (c) 2D Rastrigin

function; (d) 2D Schwefel function.

ptive selection of evolution methods increases the diversity of evolution and brings more opportunities to

discover better solutions in search space.

4 Numerical experiments

Ten representative multimodal functions are employed to show the global optimization performance of

proposed DEPSO. Note that these test functions are often used as benchmark test suite in numerical

experiments [2–12, 17–20]. Their expressions are presented as follows.

1) Acley function:

F1(x) = 20 + e − 20 exp

(

− 0.2

√

√

√

√

1

D

D
∑

i=1

x2
i

)

− exp

(

1

D

D
∑

i=1

cos(2πxi)

)

, x ∈ [−32, 32]D.

2) Rotated & Shifted Acley function:

F2(x) = 20 + e − 20 exp

(

− 0.2

√

√

√

√

1

D

D
∑

i=1

z2
i

)

− exp

(

1

D

D
∑

i=1

cos(2πzi)

)

,

x ∈ [−32, 32]D, z = (x − o2) ∗ M2,

where o2 is a randomly generated shift vector located in [−32, 32]D and M2 is a D × D dimensional

rotation matrix. Note that the procedure of generating rotation matrices can be found in [18].

3) Alpine function:

F3(x) =
D

∑

i=1

|xi ∗ sin(xi) + 0.1 ∗ xi|, x ∈ [−10, 10]D.
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4) Rotated & Shifted Alpine function:

F4(x) =

D
∑

i=1

|zi ∗ sin(zi) + 0.1 ∗ zi|, x ∈ [−10, 10]D, z = (x − o4) ∗ M4,

where o4 is a randomly generated shift vector located in [−10, 10]D and M4 is a D × D dimensional

rotation matrix.

5) Rastrigin function (Denoted here by F5; see subsection 3.2 for its expression).

6) Rotated & Shifted Rastrigin function:

F6(x) =

D
∑

i=1

[z2
i − 10 cos(2πzi) + 10], x ∈ [−5.12, 5.12]D, z = (x − o6) ∗ M6,

where o6 is a randomly generated shift vector located in [−5.12, 5.12]D and M6 is a D × D dimensional

rotation matrix.

7) Schwefel function (Denoted here by F7; see subsection 3.2 for its expression).

8) Rotated Schwefel function:

F8(x) = 418.98289 ∗ D +

D
∑

i=1

yi, x ∈ [−500, 500]D, z = x ∗ M8,

yi =

{

−zi sin(|zi|
0.5), if |zi| 6 500;

0.001(|zi| − 500)2, if |zi| > 500,

where M8 is a D ∗ D dimensional rotation matrix.

9) Shifted Rosenbrock function:

F9(x) =
D−1
∑

i=1

[100(zi+1 − z2
i )2 + (1 − zi)

2], x ∈ [−30, 30]D, z = x − o9 + i, i = [1, 1, . . . , 1]1×D,

where o9 is a randomly generated shift vector located in [−30, 30]D .

10) Shifted Levy function:

F10(x) =

D−1
∑

i=1

(zi − 1)2[1 + sin2(3πzi+1)] + sin2(3πz1)+ | zD − 1 | (1 + sin2(2πzD)),

x ∈ [−10, 10]D, z = x − o10 + i, i = [1, 1, . . . , 1]D,

where o10 is a randomly generated shift vector located in [−10, 10]D.

All the above functions except for the Shifted Rosenbrock function contain large numbers of local

optima in their landscapes. The optimal objective values of these functions for minimization are all zero.

The purpose of employing rotated or/and shifted functions to analyze the performance of optimizers is

to eliminate the “irrational” advantages of some special but useless approaches like those which favor

convergence toward zero [19]. It is convenient to identify the irrationality of these approaches by using

both unrotated unshifted functions and their rotated or/and shifted counterparts as test benchmark.

In this comparative experiment, two settings D = 10 and D = 30 are adopted for the dimension of all

functions above to test the scalability of optimizers. The algorithms for comparison are listed together

with settings of their parameters except for population size as follows:

1) DE/rand/1/bin (F = 0.5, CR = 0.9 [3]);

2) SPSO2007 (http://www.particleswarm.info);

3) DEPSO-ZX proposed by Zhang and Xie (parameter setting follows that in [12], e.g., CR = 0.1);

4) Our DEPSO (LP = 100).

According to the preliminary experiment presented in subsection 3.2, two settings PS = 30 and

PS = 50 are considered for the population size of our DEPSO in the case D = 10, and PS = 30, 100 for
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D = 30. These settings are very common and also frequently used in the literature for other optimizers

involved in this experiment [2, 3, 5–12, 20]. So the population sizing scheme applied for our DEPSO is

also used for other optimizers.

The allowable maximal numbers of function evaluations (NFEmax) for the optimization of all 10D and

30D functions except for Schwefel function and its rotated counterpart are set at 2 × 104 and 1 × 105,

respectively. NFEmax is set at 5×104 and 3×105 for 10D and 30D Schwefel functions respectively, which is

same for their rotated counterparts. These settings are beneficial to observing the performance differences

of the optimizers involved. All optimizers will run 30 times independently and stop when NFEmax is

reached in each run. The experimental results in the form of the mean plus standard deviation of finally

discovered best objective values are presented in Tables 2 and 3, and only the results corresponding to

better population sizes are reported. The figures in square brackets following the optimization results

are the statistical results of t-tests for paired comparisons. If an optimizer outperforms another one with

95% confidence, the t-test result of the paired comparison is 1; the result is −1 if it is outdone with 95%

confidence by another one, and 0 otherwise. The mean and standard deviation of time cost in each case

are also shown in Tables 2 and 3. Note that all optimizers involved in the experiment were implemented

on a PC with 2.80 GHz Pentium(R)-IV CPU and 512 MB internal memory.

As the statistical results in Tables 2 and 3 indicate, the proposed DEPSO has obvious advantages

over its three competitors. In the optimization of 10D Apline function (F3) and 10D Rotated Schwefel

function (F8), our DEPSO is inferior to DE/rand/1/bin but outperforms SPSO2007 and DEPSO-ZX.

Table 2 Statistical results of employing eight optimizers to minimize 10D benchmark functionsa)

Optimizers F1 F2 F3 F4 F5

DE/rand/1/bin
(1.9e−09)± (2.3e−09)± (8.3e−13)± (9.3e−04)± (5.6e+00)±

(2.5e−10) (3.5e−10) (7.1e−13)* (7.2e−04) (1.1e+00)

Runtime (s) 1.6±0.0 2.6±0.0 1.4±0.0 2.3±0.0 1.6±0.0

SPSO2007
(1.9e−13)± (9.3e−08)± (6.0e−07)± (3.9e−03)± (1.3e+01)±

(2.4e−14) (1.1e−08) (4.3e−07) (9.2e−04) (1.3e+00)

Runtime (s) 1.7±0.0 2.7±0.0 1.5±0.0 2.5±0.0 1.7±0.0

DEPSO-ZX
(4.6e−10)± (7.0e−10)± (2.5e−07)± (4.0e−01)± (3.3e−03)±

(1.2e−10) (1.5e−10) (1.9e−07) (1.2e−01) (1.1e−03)

Runtime (s) 1.4±0.0 2.4±0.0 1.1±0.0 2.1±0.0 1.3±0.0

Our DEPSO
(1.3e−14)± (1.7e−10)± (6.3e−10)± (5.2e−04)± 0±0[4]*

(3.1e−15)[4]* (3.6e−11)[4]* (3.0e−10)[2] (4.6e−04)[2]*

Runtime (s) 1.6±0.0 2.6±0.0 1.4±0.0 2.4±0.0 1.6±0.0

F6 F7 F8 F9 F10

DE/rand/1/bin
(1.4e+01)± (2.1e+02)± (2.7e−05)± (3.5e+00)± (4.1e−17)±

(1.8e+00) (3.2e+01) (1.3e−12)* (2.0e−01) (1.3e−17)

Runtime (s) 2.5±0.1 3.9±0.0 7.2±0.1 2.0±0.0 2.0±0.0

SPSO2007
(1.9e+01)± (4.0e+02)± (5.0e+01)± (4.9e+00)± (8.9e−25)±

(1.3e−17) (4.9e+01) (1.3e+01) (1.4e−01) (3.3e−26)

Runtime (s) 2.6±0.1 4.6±0.1 7.7±0.1 2.1±0.0 2.1±0.0

DEPSO-ZX
(1.4e+01)± (2.4e+02)± (1.9e+02)± (4.8e+00)± (1.6e−18)±

(1.1e+00) (3.7e+01) (2.7e+01) (5.3e−01) (7.2e−19)

Runtime (s) 2.2±0.0 3.1±0.0 6.3±0.1 1.7±0.0 1.8±0.0

Our DEPSO
(1.4e+01)± (2.7e−05)± (1.7e−04)± (1.8e+00)± (4.3e−27)±

(1.1e+00)[1] (1.4e−16)[4]* (1.6e−04)[2] (2.7e−01)[4]* (7.5e−28)[4]*

Runtime (s) 2.5±0.0 3.9±0.1 7.1±0.1 1.9±0.0 2.0±0.0

a) In each case, obviously better results are highlighted in bold and the best one is marked by asterisks. This denotation

manner is same in Table 3. The figures in square brackets are the results of paired t-tests between our DEPSO and its

competitors. The t-test result in each case will be one if our DEPSO outperforms its competitor with 95% certainty and zero

otherwise. The final result shown in square brackets is the sum of all paired comparison results w.r.t. each test function.

Obviously, larger values of the t-test result, with the largest value 4, mean better performance of our DEPSO.
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Table 3 Statistical results of employing eight optimizers to minimize 30D benchmark functions

Optimizers F1 F2 F3 F4 F5

DE/rand/1/bin
(1.1e−05)± (7.6e−06)± (4.0e−07)± (2.9e−02)± (2.2e+01)±

(2.2e−06) (5.1e−07) (4.0e−07) (6.0e−04) (1.8e+00)

Runtime (s) 10.7±0.1 16.1±0.0 7.8±0.1 20.1±1.1 7.0±0.0

SPSO2007
(2.1e−08)± (4.8e−08)± (2.3e−14)± (1.1e−01)± (4.9e+01)±

(2.3e−09) (5.5e−09) (1.6e−14) (5.1e−02) (8.4e+00)

Runtime (s) 11.6±0.1 16.0±0.0 11.4±0.8 17.4±0.6 8.5±0.0

DEPSO-ZX
(1.1e−13)± (1.1e+00)± (5.4e−12)± (7.9e+00)± (4.5e−01)±

(8.2e−15) (2.7e−01) (3.7e−12) (1.2e+00) (2.1e−01)

Runtime (s) 10.2±0.4 12.9±0.1 8.3±0.4 13.7±0.1 6.2±0.1

Our DEPSO
(7.7e−15)± (7.5e−15)± (1.1e−16)± (1.6e−03)± 0±0[4]*

(5.8e−17)[4]* (3.7e−16)[4]* (4.9e−17)[4]* (2.1e−04)[4]*

Runtime (s) 10.8±0.2 15.1±0.3 9.1±0.6 16.6±0.4 7.7±0.0

F6 F7 F8 F9 F10

DE/rand/1/bin
(4.7e+01)± (2.9e+03)± (1.5e+02)± (1.2e+09)± (4.1e−11)±

(7.2e+00)* (1.9e+02) (1.3e+02) (5.1e+07) (7.5e−12)

Runtime (s) 16.4±0.0 17.6±0.1 84.3±5.7 15.0±0.9 10.7±0.0

SPSO2007
(1.2e+02)± (2.8e+03)± (7.2e+02)± (6.1e+01)± (7.8e−16)±

(6.7e+00) (1.4e+02) (8.4e+01) (1.0e+01)* (1.5e−16)

Runtime (s) 17.3±0.0 22.2±0.0 94.0±7.6 15.8±0.7 13.1±0.0

DEPSO-ZX
(9.4e+01)± (7.4e+02)± (9.1e+02)± (4.6e+03)± (1.2e+00)±

(4.1e+00) (4.3e+01) (1.3e+02) (3.3e+03) (8.2e−01)

Runtime (s) 15.3±0.1 16.6±0.1 78.5±4.9 13.6±0.7 10.4±0.1

Our DEPSO
(5.5e+01)± (8.2e−05)± (8.2e−05)± (6.3e+01)± (1.3e−31)±

(4.4e+00)[2] (1.6e−14)[4]* (2.0e−14)[4]* (5.1e+00)[2]* (0)[4]*

Runtime (s) 16.4±0.1 19.8±0.0 85.3±5.2 15.1±0.8 11.5±0.0

In the optimization of 10D Rotated & Shifted Rastrigin function (F6), the four optimizers perform

comparatively. In the remaining cases, our DEPSO is the best optimizer, and its advantage over other

optimizers is prominent especially in the optimization of 30D problems. The experimental results also

validate the scalability of our DEPSO since the dimensional increase from D = 10 to D = 30 almost has

no effect on the advantages of this optimizer over its competitors. In addition, the rotation of function

landscapes indeed increases the optimization hardness of Alpine function (F4 versus F3) and Rastrigin

function (F6 versus F5) for most optimizers. Nevertheless, our DEPSO remains to be the best optimizer

or performs comparatively against the best one in the optimization of rotated functions.

Regarding the time cost (i.e., running time), it can be observed from Tables 2 and 3 that the proposed

DEPSO does not cause too much extra computation cost in contrast to other optimizers, which coincides

with the observation in our previous research [1].

5 Conclusions

The novel DEPSO optimizer is further confirmed to have excellent performance in the global optimization

of multimodal functions including those rotated benchmark functions. The proposed DEPSO has few

parameters to be tuned except for its population size and length of learning period. It was observed that

the DEPSO is insensitive to the length of its learning period. The statistical learning adopted in the

optimizer leads to the adaptation of evolution methods which is very efficient for the hybridization of

different optimizers. Fitter evolution methods at different stages can be selected online automatically.
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