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This article proposes a decomposition-based multi-objective differential evolution particle swarm opti-
mization (DMDEPSO) algorithm for the design of a tubular permanent magnet linear synchronous motor
(TPMLSM) which takes into account multiple conflicting objectives. In the optimization process, the
objectives are evaluated by an artificial neural network response surface (ANNRS), which is trained
by the samples of the TPMSLM whose performances are calculated by finite element analysis (FEA).
DMDEPSO which hybridizes differential evolution (DE) and particle swarm optimization (PSO) together,
first decomposes the multi-objective optimization problem into a number of single-objective optimization
subproblems, each of which is associated with a Pareto optimal solution, and then optimizes these subprob-
lems simultaneously. PSO updates the position of each particle (solution) according to the best information
about itself and its neighbourhood. If any particle stagnates continuously, DE relocates its position by using
two different particles randomly selected from the whole swarm. Finally, based on the DMDEPSO, opti-
mization is gradually carried out to maximize the thrust of TPMLSM and minimize the ripple, permanent
magnet volume, and winding volume simultaneously. The result shows that the optimized TPMLSM meets
or exceeds the performance requirements. In addition, comparisons with chosen algorithms illustrate the
effectiveness of DMDEPSO to find the Pareto optimal solutions for the TPMLSM optimization problem.

Keywords: tubular permanent magnet linear synchronous motor; multiobjective optimization; decompo-
sition; differential evolution; particle swarm optimization

1. Introduction

A motor can be considered as an electromechanical system, which can be described as functions of
several structure variables. Skilled designers can design highly effective motors by utilizing their
knowledge, experience and judgment to specify these variables. However, due to the complexity
of multiple tasks, even the most skilled designers are unable to take into account all of the tasks
simultaneously. It is necessary to apply multi-objective optimization to assist the designers in
optimizing the motor’s performance, reliability, and/or cost, etc.
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2 G. Wang et al.

Due to the multi-criteria nature of most real-world problems, multi-objective optimization
problems (MOPs), which are ubiquitous, particularly throughout engineering applications, involve
multiple objectives that should be optimized simultaneously. An MOP can be mathematically
formulated as

minimize F(x) = (f1(x), . . . , fm(x))T

s.t. x ∈ �, (1)

where � is the decision space and x ∈ � is a decision vector. F(x) consists of m objective functions
fj : � → Rm, j = 1, . . . , m, where Rm is the objective space.

Ashabani et al. (2010) proposed a multi-objective design optimization to improve force ripple,
developed thrust, and permanent magnet (PM) volume of an axially magnetized tubular linear
motor simultaneously by simplifying multi-objective fitness functions to a single one. For opti-
mizing the thrust and ripple of a double sided permanent magnet linear motor with respect to
its PM width, PM thickness and airgap length, Li et al. (2011a) used the thrust ripple ratio ρ

to transform the two-objective problem into a single-objective problem. For the shape optimiza-
tion of surface-mounted permanent magnet motors, a weighted combination of torque ripple,
RMS value of phase current, and total harmonic distortion of phase current was minimized as a
single-objective by a fast hybrid genetic-particle swarm optimization (Sarikhani and Mohammed
2011).

The common method in the above optimization applications is transforming an MOP into a
single-objective optimization problem (SOP, minimize f (x) = y(f1(x), . . . , fm(x)), y is an aggre-
gation method). Generally, there only exists a single solution for an SOP. However, because the
multiple objectives often conflict with each other, no single solution can optimize all objectives
simultaneously. Instead of a single solution for an SOP, the Pareto optimality concept is formally
defined for MOPs as follows (Deb 2001).

Definition 1.1 A vector u = (u1, . . . , um)T is said to dominate another vector v = (v1, . . . , vm)T,
denoted as u ≺ v, iff ∀j ∈ {1, . . . , m}, uj ≤ vj and u �= v.

Definition 1.2 A feasible solution x∗ ∈ � of problem (1) is called a Pareto optimal solution, iff
�y ∈ � such that F(y) ≺ F(x∗). The set of all the Pareto optimal solutions is called the Pareto
set (PS), denoted as

PS = {
x ∈ �|�y ∈ �, F(y) ≺ F(x)

}
.

The image of the PS in the objective space is called the Pareto front (PF)

PF = {F(x)|x ∈ PS} .

In SOPs, all solutions can be compared based on their objective function values, and the task
of optimization is often to find one single optimal solution. In MOPs, the aim of optimization is
to produce a number of Pareto optimal solutions based on domination. All the solutions should
be selected to be as diverse as possible for representing the whole PF. Therefore, a selection
mechanism should be applied effectively for MOPs. There are three most possible mechanisms
(Wagner et al. 2007, Coello Coello 2011a), Pareto-based selection, indicator-based selection and
aggregating-functions. The decomposition approach was first presented by Zhang and Li (2007)
as an aggregating-functions method. It was shown to be a very promising way to address MOPs
(Coello Coello 2011a) and applied to some other engineering problems.

A specialized MOEA (Konstantinidis et al. 2010) based on decomposition (MOEA/D) uses
an M-tournament selection, a window crossover and a mutation operator to find optimal mobile
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Engineering Optimization 3

agent routes for minimizing the data path loss and the energy consumption of the sensors as well
as maximizing the data accuracy. Simulation results have shown that the specialized MOEA/D
performs better than the MOEA/D (Zhang and Li 2007) and the EMOCA (evolutionary multi-
objective crowding algorithm, see Rajagopalan et al. 2008). Then Konstantinidis andYang (2011a)
applied the algorithm to solve the K-connected deployment and power assignment problem in
wireless sensor networks (WSNs). Furthermore, Konstantinidis and Yang (2011b) proposed a
generalized subproblem-dependent heuristic to be incorporated into MOEA/D to improve the
performance for theWSNs. Cheng et al. (2011) proposed a multi-objective ant colony optimization
algorithm based on decomposition to solve the bi-objective travelling salesman problem.

Owing to their population-based heuristic nature, evolutionary algorithms (EAs) are the most
widely used technique to deal with MOPs. By 1 February 2012, more than 6700 publications
had been published on evolutionary multi-objective optimization (Coello Coello 2011b), most in
the last eight years. As two instances of EAs used for MOPs, particle swarm optimization (PSO)
and differential evolution (DE), two powerful population-based metaheuristics algorithms, were
widely used.

Reyes-Sierra and Coello Coello (2006) presented the main issues to be considered when extend-
ing PSO to solve MOPs, and summarized some methods to handle them. Recently, an enhanced
multi-objective particle swarm optimization approach based on Pareto dominance (dos Santos
Coelho et al. 2010) was used to optimize 10 design variables of a brushless DC wheel motor con-
sidering two objectives simultaneously, i.e. the minimization of the mass and the maximization of
the efficiency. Kotinis (2011) implemented co-evolution and parallelization into multi-objective
particle swarm optimization, and the effectiveness of the multi-objective PSO (Nourbakhsh et al.
2011) was proved by comparison with NSGA-II in centrifugal pump applications. Gas turbine
engine fuel controller gain tuning can be modelled as an MOP, and solved by PSO (Montazeri-Gh
et al. 2011). Kulturel-Konak and Konak (2011) proposed PSO with flexible bay structure to solve
the unequal area facility layout problem with two objectives, the material handling cost and the
layout area requirement.

Villarreal-Cervantes et al. (2010) used differential evolution to optimize the structural param-
eters of a non-redundant parallel robot and the control parameters simultaneously for a five-bar
parallel robot. A self-adaptive differential evolution algorithm (Wang et al. 2010) with elitist
archive and entropy-based diversity preservation strategy was presented to solve multi-objective
optimization based on Pareto dominance. Basu (2011) used a two-objective differential evolution
to optimize both fuel cost and emission level for an economic environmental dispatch problem.
Ramesh et al. (2011) proposed an improved generalized differential evolution (I-GDE3) based on
the concepts of simulated binary crossover based recombination and dynamic crowding distance.
It can optimize the reactive power dispatch problem with multiple and competing objectives, real
power loss and voltage deviation.

For both PSO and DE, hybridization with other approaches can contribute to their performance
improvement for solving practical engineering problems (Kulturel-Konak and Konak 2011, Li
et al. 2011b). Moreover, the hybridization between DE and PSO is a very promising way to create
more efficient optimizers, as surveyed by Xin et al. (2011) recently. Chen et al. (2009 pointed
out that a reasonable tradeoff between exploration and exploitation makes the hybridization more
powerful. Therefore, in this article, for the design optimization of a tubular permanent magnet
linear synchronous motor (TPMLSM) with multiple objectives, a decomposition-based multi-
objective differential evolution particle swarm optimization (DMDEPSO) approach is proposed
by hybridizing PSO and DE reasonably. The remainder of this article is organized as follows. In
Section 2, the structure and the analysis methods of the TPMLSM are presented, then an artificial
neural network response surface is established for calculating the performance with respect to
each combination of design variables, instead of FEA to reduce time-consumption. In Section 3,
hybridizing DE and PSO, DMDEPSO is proposed to deal with the multi-objective TPMLSM
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4 G. Wang et al.

optimization. Section 4 provides the design of TPMLSM optimized by DMDEPSO. Conclusions
are drawn in Section 5.

2. Tubular permanent-magnet linear synchronous motor

2.1. Motor structure

Tubular permanent magnet linear synchronous motors (TPMLSMs), which show a significant
advantage in terms of direct thrust, high efficiency, good reliability and high accuracy positioning,
have been widely applied in industrial robots, machine tools, packaging equipment, etc. The
schematic model of the present TPMLSM to be optimized is shown in Figure 1.

The TPMLSM consists of a long stator (internal assembly) and a short mover or runner (exte-
rior cylinder). The mover consists of a armature core and a three-phase armature winding. The
winding is assembled from 24 coils. As shown in Figure 1(a), each coil is located separately
in an armature slot. The stator consists of a ferromagnetic pipe, permanent magnets (PMs) and
non-ferromagnetic spacers. These PMs located on an inner pipe are separated from each other by
the non-ferromagnetic spacers. The pipe is made of high strength stainless steel with good rigidity
for bearing external mechanical forces. The armature core is composed of laminated silicon–steel
sheets with high permeability. Figure 2 shows the nonlinearities of the ferromagnetic pipe and
armature core (Song 2003). Generally, since the coercive force Hc of the neodymium–iron–boron
(NdFeB) PM is nearly −927 kA m−1, material linearity is assumed. Its relative permeability μr

is close to 1.05.

(a) (b)

Figure 1. The TPMLSM model.

Figure 2. The B–H characteristic of the pipe and armature core.

D
ow

nl
oa

de
d 

by
 [

B
ei

jin
g 

In
st

itu
te

 o
f 

T
ec

hn
ol

og
y]

 a
t 2

2:
24

 1
3 

N
ov

em
be

r 
20

12
 



Engineering Optimization 5

Table 1. Parameters of the TPMLSM model (all values in millimetres).

Parameter Symbol Value Parameter Symbol Value

Airgap δ [1, 3] Pipe inner radius r0 21
PM width τm [10, 24.3] Slot depth ds [13, 23]
PM height dh [2, 6] Slot width ωs [10, 16]
Pole pitch τp 24.3 Pipe thickness dc [8, 12]
Motor outer radius R 60 Slot bottom da 5
End tooth width ωe [4, 12] Slot pitch τs 20.25

The pole pitch τp is set to 24.3 mm. Due to the 24/20 pole/slot ratio (Wang 2011), the slot pitch
τs is 20.25 mm. The other key geometric parameters shown in Figure 1(b) are listed in Table 1.
Only the parameters with non-fixed values are chosen to be optimized. The mover outer radius
R = r0 + dc + dh + δ + ds + da is set to 60 mm to meet design requirement.

2.2. Electromagnetic analysis

Because of no significant magnetic effect at a low frequency, the displacement current can be
neglected. Thus, omitting the eddy current generated by the motion of the permanent magnets,
the simplified form of the Maxwell’s equation for TPMLSM electromagnetic analysis can be
written as

∇ × H = J, (2)

where H is the magnetic field intensity and J is the current density. Because the magnetic flux den-
sity B satisfies B = μ(B)H and the magnetic vector potential A satisfies B = ∇ × A, Equation (2)
is converted to the Poisson differential equation (3):

∇ ×
(

1

μ(B)
∇ × A

)
= J, (3)

where μ(B) is the magnetic permeability.
Because of the non-existence of the radial component Ar and axial component Az in the cylin-

drical system, only the angular component Aϕ of the magnetic vector potential A governs the
domain. Thus, Equation (3) can be formulated in the generalized form

∂

∂r

[
1

μ(B)

(
∂Aϕ

∂r
+ Aϕ

r

)]
+ ∂

∂z

(
1

μ(B)

∂Aϕ

∂z

)
= −Jϕ , (4)

where Jϕ is the angular component of the current density J. Over the region of the slots, the current
density J is the excitation input current density Jc of the coils. Over the region of the permanent
magnets, the current density J is set to the equivalent current density Jm = ∇ × M.

By solving Equation (4), the distribution of magnetic vector potential A can be obtained, then
the magnetic flux density B can be calculated by Equation (5):

B = ∇ × A = −∂Aϕ

∂z
er +

(
∂Aϕ

∂r
+ Aϕ

r

)
ez. (5)

The magnetic flux density B in the 3-D cylindrical coordinate system (r, ϕ, z) only has the
components Br(r, ϕ, z) in the radial direction er and Bz(r, ϕ, z) in the axial direction ez. Finally,
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6 G. Wang et al.

(a)

(c) (d)

(b)

Figure 3. Finite element analysis of the TPMLSM.

the force F can be deduced as follows:

F = 1

μ0

∮
s

[
B2

r − 1
2 |B|2 BrBz

BrBz B2
z − 1

2 |B|2
] [

er

ez

]
ds, (6)

where μ0 is the permeability of free space and s is the integration surface, which is the contact
surface between the mover and free space. Free space herein means the space the motor runs in,
such as air or oil.

2.3. Finite element analysis

Because Equation (4) can be solved only when all key effects are considered, such as material
nonlinearity, the natural boundary condition, and the continuity of the complicated contact surfaces
between different components, it is hard to solve the electromagnetic problem of the TPMLSM
by solving Equation (4) directly. Instead, finite element analysis (FEA) can be used to evaluate
the motor performance numerically with good accuracy.

Symmetry is exploited to reduce the problem domain to half of the axial cross section of the
TPMLSM shown in Figure 1. The calculation area consists of the halved cross section and its
surrounding air, with natural boundary conditions. The area is first discretized into finite element
sub-domains, such as the TPMLSM elements shown in Figure 3(a). Then the equation of each
element is represented by a set of linear equations using the Lagrange method. A global matrix is
formed from the assembly of linear equations of all the elements in accordance with the continuity
of magnetic potentials. The distribution of A can be obtained by solving the global matrix finally.

The three-phase AC input current density J RMS is about 4.8 × 106 A m−2, arranged in A–A′–
B′–B–C–C′–A′–A–B–B′–C′–C order twice for 24-slot 20-pole TPMLSM. Since one pole-pitch
distance equal to 180 electrical-angle degrees is divided into 18 sections, it is defined that the
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Engineering Optimization 7

moving distance of each step covers 10 electrical-angle degrees. Meanwhile, the current phase
turns 10 degrees per step. To analyse the force along the moving direction, the air between mover
and stator is divided into two parts. The contact elements between these two parts should be
coupled correctly at each step (ANSYS Inc. 2009).

To solve nonlinear electromagnetic analysis problems, the preconditioned conjugate gradient
(PCG) method is applied based on the magnetic vector potential (ANSYS Inc. 2009). The con-
vergence tolerance is set to 0.001. Then magnetic forces during the moving processing over one
pole pitch can be sampled at 18 steps and calculated one by one. For example, at the first step, the
magnetic field distribution is reduced, and its flux linkage is shown in Figure 3(c). According to
the distribution, the force can be calculated by a virtual work method, shown as the coordinates
that the text arrow ‘Step 1’ pointed in Figure 3(b). Then the coupling of the contact elements is
deleted. After the mover moves one eighteenth pole-pitch distance for the next step, the contact
elements are recoupled. The magnetic field density is resolved and its flux linkage is shown in
Figure 3(d), and the force is shown as the coordinates that the text arrow ‘Step 2’ points to in
Figure 3(b). The processing will be repeated until the moving distance achieves one pole pitch.
Finally, the forces are obtained after 18 steps, as shown in Figure 3(b).

Obviously, the forces along the moving direction fluctuate, which is caused by both the end
effect and the cogging force. To quantify the motor performance, the average of the forces is
defined as the thrust F0 and the standard deviation is defined as the ripple Fr.

Under the same conditions of exciting current and structural materials, the thrust F0 and the
ripple Fr are determined by the structural dimensions simultaneously. δ determines the magnetic
density; the permanent magnet width τm and the height h determine the magnetic field and PM
volume; ωs and ds determine the winding volume; τe affects the end effect; and dc affects both
the PM volume and the winding volume. Because ds = R − (r0 + dc + dh + δ + da), the thrust
F0 and the ripple Fr can be described by six variables as follows:

F0 = f0(δ, τm, dh, ωs, ωe, dc)

Fr = fr(δ, τm, dh, ωs, ωe, dc).

}
(7)

FEA can solve the problem with high accuracy; however, it always takes too much time for
each calculation, about 430 seconds using a Xeon 2.8 GHz CPU with 4 Gb memory workstation.
Because thrust the F0 and the ripple Fr should be calculated repeatedly for each iteration during
the procedure of optimization, it will take an extremely long time. So it is very useful to establish
a response surface to replace FEA.

2.4. Artificial neural network response surface

Response describes the performance measure or quality characteristic of a system. Response
surface (RS), which means the relationship between the system input variables and responses, has
been widely used for developing, improving and optimizing the processes of structural design.

The polynomial-based response surface method (RSM) can be used to generate a response
surface from the fitting of a polynomial equation by using experimental data. The commonly used
second order response surface can be written as follows:

y =
k∑

j=1

βjjx
2
j +

k∑
i �=j

βiβjxixj +
k∑

j=1

βjxj + β0 + ε, (8)

where y is the true response with variables xi (i = 1, . . . , k), β is the regression coefficient, and ε

denotes the statistical error, which should be minimized by estimating the unknown coefficients
(Myers et al. 2009).
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8 G. Wang et al.

Bias

Bias

F0 Fr

Input layer

Hidden layer

Output layer

chm ws we

...

Figure 4. The architecture of the artificial neural network.

However, the polynomial-based method for the response surface suffers from complexity and
unacceptable error for high-dimensional problems. Owing to the advantage of approximating
nonlinear functions, an artificial neural network (ANN) is adopted to overcome these disadvan-
tages. Among different ANN models, the multi-layer perception (MLP) model, which is capable
of learning a rich variety of nonlinear decision surfaces, is adopted in this application. The archi-
tecture is shown in Figure 4. The inputs of the ANN are the variables δ, τm, dh, ωs, ωe and dc.
The logistic sigmoid transfer function is used to transfer the values of the six input layer neurons
to the twenty hidden layer neurons, whereas the linear transfer function is adopted to transfer
the values from the hidden layer to the output layer with two neurons. Finally the output, which
consists of the thrust F0 and the ripple Fr is deduced. An improved Levenberg–Marquardt training
algorithm is applied to minimize the root-mean-square error of the network output (Beale et al.
2011).

Samples are generated first to train ANN with respect to each combination of design variables.
300 latin hypercube samples are generated by lhsdesign according to the maximin criterion (The
MathWorks Inc. 2011). Moreover, the other 26 boundary vertices are also chosen as samples. The
thrust F0 and the ripple Fr of each sample are calculated by FEA. Then the ANNRS is trained.
To validate its accuracy, another 50 test samples are generated by lhsdesign. These test samples
are simulated with the ANNRS to calculate the thrusts and ripples, which are also calculated by
FEA at the same time. For ANNRS, in comparison with FEA, its average absolute error for the
thrust F0 is 0.4651 N with maximum 1.7336 N, and its average absolute error for the ripple Fr is
0.5306 N with maximum 1.0435 N. This means that ANNRS can achieve reasonable accuracy as
a substitute for FEA.

It takes about 43.48 hours to calculate the 364 training samples, about 4 minutes to train the
ANNRS. For population-based metaheuristics algorithms, for example 100 particles of a PSO
swarm updating for 500 iterations, one needs to evaluate the objectives 50 thousand times. It
will take only 23.28 seconds to evaluate the objectives by ANNRS for these times. However,
about 8.29 months will be needed by FEA. Obviously, ANNRS is easily the more acceptable for
engineering projects.

Given the values of the design variables, ANNRS outputs the thrust F0 and the ripple Fr, i.e.
its implementation is ‘opaque’. ANNRS can be viewed solely in terms of transfer characteristics
without any knowledge of its internal workings. So ANNRS is a black-box model. To study the
transfer characteristics of ANNRS, some variations of thrust F0 and ripple Fr as functions of
different variables are shown in Figure 5 as examples. In all subfigures, the other four unstated
variables are set to the median values within their ranges. F0 has three minima with respect
to dc and δ, four with respect to dc and ωs, and three with respect to dc and ωe. Fr has three
minima with respect to δ and τm, four with respect to δ and dc, and three with respect to τm

and dc. Consequently, ANNRS is equivalent to a multi-modal nonlinear function with respect to
dependent design variables.

D
ow

nl
oa

de
d 

by
 [

B
ei

jin
g 

In
st

itu
te

 o
f 

T
ec

hn
ol

og
y]

 a
t 2

2:
24

 1
3 

N
ov

em
be

r 
20

12
 



Engineering Optimization 9

1

2

3

8

10

12

1k

2k

(a) (b) (c)

(d) (e) (f)

F
0 

(N
)

F
0 

(N
)

F
r 
(N

)

F
r 
(N

)

F
0 

(N
)

F
r 
(N

)

d
c  (mm)

s2 s3

s2

s1

s3

s1

s4

s2

s1

s3

8
10

12 10
12

14
16

1k

2k

3k

dc( mm )

d
c ( mm )

4

8

12

8

10

12

1k

2k

3k

)

1
2

3 10
15

20
25

50

100

150

s
1

s
2

s
3

1
2

3 8
10

12

50

100

150 s
1

s
4

10
15

20
25

8
10

12

50

100

150

tm(mm)

d (mm)
d (mm)

d (mm)
w s

(m
m)

w e
(mm)

d c
( m

m )

d c
( mm )

d c
( mm )

s1

s2

s3s3

s2

Figure 5. The variation of the ripple Fr as a function of different variables.

3. Decomposition-based multi-objective differential evolution particle swarm
optimization

3.1. Decomposition-based selection mechanism

A new decomposition-based approach was proposed by Zhang and Li (2007) to decompose an
MOP into a number of different single-objective optimization subproblems (SOSs) and define
neighbourhood relations among these SOSs. In this application, the Tchebycheff approach is
applied as the decomposition method on an MOP, then an SOS with a weight vector � is deduced
as below:

minimize g(x|�, z∗) = max
1≤j≤m

{
λj|fj(x) − z∗

j |
}

s.t. x ∈ �, (9)

where � = (λ1, . . . , λm), λj ≥ 0 for all j = 1, . . . , m, and
∑m

j=1 λj = 1. z∗ = (z∗
1, . . . , z∗

m) is the
reference point, i.e. z∗

j is the smallest objective value of fj that the swarm has found so far.
It is known that for each Pareto optimal solution x∗, there exists a weight vector � such that x∗

is the optimal solution of SOS (9), and the optimal solution of each SOS (9) is a Pareto optimal
solution of MOP (1). Let {�1, . . . , �i, . . . , �N } be a set of weight vectors. Correspondingly, there
exist N SOSs. In the optimization process, the ith SOS is associated with the ith weight vector �i

consistently. Finally, if N is reasonably large and the set {�1, . . . , �N } is properly selected, the N
optimal solutions of these N SOSs (9) will provide a good approximation to the Pareto solutions
of MOP (1).

Because there exist disparately scaled objectives for many real problems, g(x|�, z∗) is redefined
to normalize the objectives as follows:

g(x|�, z∗) = max
1≤j≤m

{
λj

∣∣∣∣∣ fj(x) − z∗
j

znad
j − z∗

j

∣∣∣∣∣
}

, (10)
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10 G. Wang et al.

where znad
j is the nadir point in the objective space, approximated to the largest value of fj evaluated

by the current positions of all the particles in the swarm.

3.2. Particle swarm optimization

Since the original version of the particle swarm optimization (PSO) algorithm was introduced
by Kennedy and Eberhart (1995) for SOPs, PSO has gained wide application as an optimization
tool to facilitate engineering design (Panigrahi et al. 2011). The particle swarm optimizer used
here is a variant of PSO with the constriction factor (PSO-cf) (Clerc and Kennedy 2002) shown
as follows:

vi
j(k + 1) = χ · [vi

j(k) + c1 · r1 · (pbi
j(k) − pi

j(k)) + c2 · r2 · (nbi
j(k) − pi

j(k))]
pi

j(k + 1) = pi
j(k) + vi

j(k + 1),

}
(11)

where the superscript i indicates the ith particle (i = 1, 2, . . . , PS; PS is the population size);
the subscript j indicates the jth dimension (j = 1, 2, . . . , m; m is the particle dimension, i.e. the
dimension of the search space); and the index k indicates the kth generation. pi = [

pi
1, pi

2, . . . , pi
m

]T

and vi = [
vi

1, vi
2, . . . , vi

m

]T
represent the position and the velocity of the ith particle respectively.

pbi = [
pbi

1, pbi
2, . . . , pbi

m

]T
is the personal best position found so far by the ith particle. nbi =[

nbi
1, nbi

2, . . . , nbi
m

]T
is the best position found by the particles in the neighbourhood of the ith

particle. r1 and r2 are two random numbers in the range [0,1]. c1 and c2 are two acceleration
coefficients, and both of them are set to c1 = c2 = 2.05; χ is the constriction factor, and a common
setting of this parameter is χ = 0.7298 (Clerc and Kennedy 2002).

For any particle, all dimensions of its position will be confined between corresponding lower
bound pl

j and upper bound pu
j . In cases of bound violation, the position and the velocity are

modified by

pi
j = pl

j and vi
j = 0

pi
j = pu

j and vi
j = 0

if (pi
j < pl

j)

if (pi
j > pu

j ).

}
(12)

3.3. Differential evolution

Differential evolution proposed by Storn and Price (1997) has been proved very efficient and
robust in function optimization and applied to solve problems in many scientific and engineering
fields (Qing 2009), and a recent survey on DE is provided by Das and Suganthan (2011).

The most classical DE variant is DE/rand/1/bin. In this DE variant, for the mutation of the
ith individual in the DE population {pi|i = 1, 2, . . . , PS}, three different individuals pr1 , pr2 and
pr3 with r1 �= r2 �= r3 �= i will be chosen randomly from the population to generate a new vector.
The new vector can be expressed as follows:

zi = pr1 + F · (pr2 − pr3), (13)

where F is the so-called scaling factor and a general setting for this factor is F ∈ (0.4, 0.95). For
optimization with the nonlinear multi-modal black-box ANNRS, a good initial choice of F is 0.9
(Ronkkonen et al. 2005). After mutation, a binominal (bin) crossover operates on the vector zi

and the target vector pi to generate the final vector ui in the following way:

ui
j =

{
zi

j if (randi
j ≤ Cr or j = rni)

pi
j otherwise,

(14)
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Engineering Optimization 11

where pi
j, zi

j and ui
j are the jth dimension components of the vectors pi, zi, and ui, respectively; rni

is a number that is randomly selected from the index set {1, 2, . . . , m}, ensuring that the trial vector
ui is different from the target solution pi. Cr is the predefined crossover probability. Ronkkonen
et al. (2005) also pointed out that Cr should lie in (0, 0.2) when the function is separable, while
in (0.9, 1) when the function’s parameters are dependent. Due to the multi-modal ANNRS with
respect to the dependent design variables, a good choice of Cr is 0.9.

Finally, ui will be compared with pi, and the better one will be selected to be a member of the
DE population for the next generation.

3.4. Decomposition-based multi-objective differential evolution particle swarm optimization

Because the optimal solution of each SOS is a Pareto optimal solution of the MOP, decomposition-
based multi-objective differential evolution particle swarm optimization (DMDEPSO) attempts
to optimize the N SOSs decomposed from an MOP simultaneously. In DMDEPSO, the neigh-
bourhood of �i is defined as the T closest weight vectors from {�1, . . . , �N } to a weight vector
�i. The SOSs with these T closest weight vectors constitute the neighbourhood of the ith SOS
with the weight vector �i. An underlying assumption for this approach is that the optimal solu-
tions of neighbouring SOSs should be close to each other in the objective space. The current
position of a particle can be evolved by DMDEPSO, according to the information from itself, its
neighbourhood and the whole swarm.

Zhang and Li (2007) claimed that the decomposition-based algorithm is not very sensitive
to the setting of T , and suggested that neighbourhood size T should be much smaller than the
population size N . So N/20 is rounded to its nearest integer, and T is set to the integer.

Each element of a weight vector takes its value from {0/H, 1/H, . . . , H/H}, and the sum of
the elements of the weight vector must equal to one. Therefore, there are N = Cm−1

H+m−1 different
weight vectors for an MOP with m objectives. Each vector will be associated with one particle
consistently, for evaluating the particle’s SOS fitness by Equation (10). At each iteration, the
DMDEPSO algorithm maintains the following data structures:

• a swarm of N particles, where the ith particle has a position vector pi, a velocity vector vi,
a father position vector hi used for determining whether it stagnates or not, a personal best
position vector pbi, and a neighbourhood best position vector nbi. N is also the number of
SOSs;

• a reference point z = (z1, . . . , zm)T, a nadir point znad = (znad
1 , . . . , znad

m )T;
• an external archive ExA, which is used to store non-dominated solutions found during the

search process;
• a counter to record the number of continuously stagnating iterations S, and a trigger value s∗

used for determining whether the particle is evolved by DE or not.

The DMDEPSO algorithm in pseudocode follows.

Step 1: Initialization
1.1 Set ExA = ∅, S = 0. Assign proper H, then N = Cm−1

H+m−1.
1.2 Initialize the weight set {�1, . . . , �N }, and compute the Euclidean distances between

any two weight vectors. For each i = 1, . . . , N , set B(i) = {i1, . . . , iT } where
�i1 , . . . , �iT are the T closest weight vectors to �i. T is called the neighbourhood
size.

1.3 Initialize the position set � = {p1, p2, . . . , pN } of the swarm with N particles being
randomly generated between the lower bound pl and the upper bound pu.

1.4 Initialize the velocity of particle i (i = 1, 2, . . . , N) randomly between pl − pi and
pu − pi.
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12 G. Wang et al.

1.5 Set the reference point z = min1≤i≤N
{
f(pi)

}
and the nadir point znad =

max1≤i≤N
{
f(pi)

}
.

1.6 Set the initial father position hi, the personal best pbi and neighbourhood best nbi to
pi for each i = 1, . . . , N .

Step 2: Evolve with PSO
For i = 1, . . . , N , according to the personal best pbi and the neighbourhood best nbi,
calculate the velocity vi and update the position pi with Equation (11), and then modify
the position pi according to Equation (12).

Step 3: Update z, znad

For j = 1, . . . , m, set zj = min

{
zj, min

1≤i≤N

{
fj(pi)

}}
, znad

j = max
1≤i≤N

{
fj(pi)

}
.

Step 4: Evolve with DE
For i = 1, . . . , N ,
4.1 If g(pi|�i, z) < g(hi|�i, z), then set si = 0, else si = si + 1.
4.2 If si > s∗, set r1 = i, and randomly select other two different r2 and r3 between 1 and

N , then generate a solution pi according to Equation (13), and then a new solution
pi is produced from pi with Equation (14).

Step 5: Update z, znad

For j = 1, . . . , m, set zj = min

{
zj, min

1≤i≤N

{
fj(pi)

}}
, znad

j = max
1≤i≤N

{
fj(pi)

}
.

Step 6: Update positions
For i = 1, . . . , N ,
6.1 (Personal best) If g(pi|�i, z) ≤ g(pbi|�i, z), then set pbi = pi.
6.2 (Neighbourhood best) For each index j ∈ B(i), if g(pi|�i, z) ≤ g(nbi|�i, z), then set

nbi = pi.
6.3 (Father position) Set hi = pi.
6.4 (ExA). Remove all the vectors dominated by F(pi) from EA, and add F(pi) into EA

if no vectors in EA dominate it.
Step 7: If the stopping criteria are satisfied, then stop and output ExA. Otherwise go to Step 2.

During the process of DMDEPSO, PSO and DE are hybridized for solving all the subproblems
which are decomposed from the multi-objective problem. The ith SOS (i = 1, . . . , N) is associated
with a constant weight vector �i, and its solution is represented by the position of the ith particle
of the swarm. In PSO, the ith particle searches for the optimal point of the ith SOS in the solution
space by using the best information from itself and its neighbourhood.

Because PSO has the disadvantage of premature convergence, particles are easily trapped into
local minima of the nonlinear multi-modal ANNRS. Then, to avoid this phenomenon, DE uses
two different particles randomly selected from the whole swarm to evolve the particle if stagnated
continuously for s∗ iterations. The evolved particle not only can be updated by the DE approach,
but also can provide new information from the swarm for the neighbourhoods which include this
particle. The hybridization between PSO and DE makes the trade-off between exploration and
exploitation more reasonable, so that it is conducive to the search capability of DMDEPSO. Since
all the particles search the optimal solutions simultaneously, the PS/PF will be obtained after the
algorithm terminates in a single run.

4. Optimization design

In this section, the values of the TPMLSM structural parameters are optimized simultaneously by
means of four tasks: enhancing the thrust F0 (N), restraining the ripple fr (N), as well as reducing the
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Engineering Optimization 13

active PM volume Vp (cm3) and the winding volume Vc (cm3). For the 20-pole 24-slot TPMLSM,
the active permanent magnet volume Vp is governed by π × [

(r0 + dc + dh)
2 − (r0 + dc)

2
] ×

(20τm)/1000, the winding volume Vc is approximated to π × [
(R − da)

2 − (R − da − ds)
2
] ×

(24ωs)/1000. According to the geometric parameters shown in Table 1, it can be deduced that the
minimum of Vp (Vp min) is 75.3982 and the maximum (Vp max) is 659.5837, the minimum of Vc

(Vc min) is 950.7716 and the maximum (Vc max) is 2413.9495.
To illustrate the effectiveness of the hybridization with DE, two other techniques are employed

to update the stagnated particles respectively. One adopts a polynomial mutation as shown by Li
and Zhang (2009), denoted by DMPMPSO. The other directly selects three particles from the
whole swarm to update the stagnated particle by DE which is shown in Section 3.3, denoted by
DMWDEPSO.

Also, three other algorithms have been chosen in order to compare their performance with
that of the DMDEPSO: dMOPSO (Martínez and Coello Coello 2011), MOEA/D-DE (Li and
Zhang 2009), and NSGA-II (Deb et al. 2002). dMOPSO and MOEA/D-DE, both based on
decomposition, are evolved by PSO and DE respetively. NSGA-II is based on non-dominated
sorting and the GA strategy.

The set coverage (Zitzler and Thiele 1999) is often used as a performance measure in real PF
unknown situations. For two approximations of the PF, A and B, the set coverage ζ(A, B) is defined
as the percentage of the solutions in B that are dominated by the solutions in A, i.e.

ζ(A, B) = |{u ∈ B|∃v ∈ A : v ≺ u}|
|B| .

ζ(A, B) is not necessarily equal to 1 − ζ(A, B). ζ(A, B) = 1 means that all solutions in B are
dominated by some solutions in A, while ζ(A, B) = 0 implies that no solution in B is dominated
by a solution in A. Denote the approximation of the Pareto front that DMDEPSO obtains by A,
DMPMPSO by B, DMWDEPSO by C, dMOPSO by D, MOEA/D-DE by E and NSGA-II by F.

In what follows, optimizations with two objectives and three objectives are first presented
separately to show and compare the Pareto fronts visually. Then four-objective optimization is
presented. For all the optimizations, each algorithm runs 500 iterations before termination. For
DMDEPSO, DMPMPSO and DMWDEPSO, if a particle stagnates continuously for 10 iterations
(s∗ = 10), updating techniques will be applied respectively. To compare the performance of these
algorithms, 30 runs are carried out for each algorithm and problem independently.

4.1. Two-objective optimization

In order to optimize four tasks simultaneously, two objectives of this optimization are shown in
Equation (15). For the objective f1, Vp is multiplied by seven and then added with Vc to trade off
the Vc and Vp. The purpose of this operation is to ensure equal weighting on Vc and Vp. Therefore,
F0, Vc and Vp are integrated into the objective function f1. For each algorithm, 200 individuals
(N = 200) are selected, then the two-objective PFs are obtained.

f1 = Vc + 7Vp

F0
; f2 = Fr. (15)

Figure 6 shows the PFs obtained by the first run. The PF indicated by the (light) green dots is
obtained by DMDEPSO. It is shown that DMDEPSO has a better performance than the other algo-
rithms for the two-objective optimization problem. And Figure 7 illustrates the statistical results
for the set coverage measure of PFs via box-plots. Taking dMOPSO as an example, 54.93% median
(the third column shown in Figure 7(a), 43.83% lower adjacent, 49.91% 25th percentile, 63.97%
75th percentile, 81.69% upper adjacent, and one outlier 92.49%) of the final solutions generated
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14 G. Wang et al.
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Figure 6. Pareto fronts with two objectives obtained by the first run.
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Figure 7. Set coverage of the two-objective problem.

by dMOPSO are dominated by those generated by DMDEPSO, and only 7.49% median (the third
column shown in Figure 7(b), 3.28% lower adjacent, 6.50% 25th percentile, 9.01% 75th percentile,
12.69% upper adjacent, and two outliers, 2.02% and 1.16%) of the final solutions generated by
DMDEPSO are dominated by those generated by dMOPSO. This means that ζ(A, D) > ζ(D,A)

for each run, and the null hypothesis of equal medians for ζ(A, D) and ζ(D,A) is rejected at the
5% significance level according to the Wilcoxon rank sum test. This also applies to all the other
comparisons. Generally, the final PF obtained by DMDEPSO is better than that obtained by the
other algorithms.

However, updating the stagnated particles increases the ANNRS evaluations. The average of
ANNRS evaluations is 105,725.6 times for DMDEPSO, less than 106,217.3 times for DMPMPSO,
106,165.2 times for DMWDEPSO, and 110,215.9 times for dMOPSO, but more than 100,200
times for MOEA/D-DE and NSGA-II consistently. However, it is worth increasing by 5.51% the
ANNRS evaluations of MOEA/D-DE or NSGA-II to improve the optimal designs by DMDEPSO.
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Engineering Optimization 15

Table 2. Six design schemes obtained by two-objective optimization.

Symbol 2C1 2C2 2C3 2C4 2C5 2C6

Parameters δ (mm) 1.00 1.55 1.85 1.97 2.06 2.17
τm (mm) 23.33 23.33 23.33 23.33 23.33 23.33
dh (mm) 2.00 2.00 2.00 2.00 2.00 2.00
ωs (mm) 12.39 12.19 12.71 12.66 12.89 13.28
τe (mm) 12.00 11.98 12.00 12.00 12.00 12.00
dc (mm) 9.18 9.68 9.69 9.73 9.79 9.92

Tasks F0 (N) 2793.00 1675.66 2489.36 2299.91 2187.81 2083.62
Fr(N) 115.69 78.08 43.61 23.57 10.54 0.03

Vc (cm3) 1797.51 1703.75 1755.64 1737.40 1760.00 1796.54
Vp (cm3) 182.82 185.73 185.82 186.05 186.39 187.22

Figure 8. Forces of the six selected optimal designs with two objectives.

For comparing the performance of DMDEPSO, MOEA/D-DE and NSGA-II by the same
number of evaluations, DMDEPSO immediately breaks out of the searching loop and outputs
ExA when ANNRS evaluates 100,200 times. Denote the Pareto front that DMDEPSO outputs
by A′. DMDEPSO also runs 30 times, then the statistical results on set coverage are deduced
and shown in Figure 7. The results show that DMDEPSO performs better than MOEA/D-DE
and NSGA-II for the two-objective optimization problem with the same number of ANNRS
evaluations.

Six optimal designs from the PF shown in Figure 6(f) are listed in Table 2. Then the performance
of these optimal designs is evaluated by FEA, and the forces are shown in Figure 8 respectively.

As shown in Figure 6, the largest Fr is as much as 115.69 N, exceeding the upper boundary of
the design demand. The range of f1 is between 1.10 and 1.49. This means that the Pareto solutions
are crowded within a small range. Optimization with the aggregative objective f1 cannot guarantee
that F0, Vc and Vp satisfy the demands independently. For example, Vc and Vp have little difference
among these Pareto optimal solutions listed in Table 2. Moreover, these solutions are very close
to each other except for δ. To enhance the diversity of solutions, the thrust and volumes should
be considered separately.

4.2. Three-objective optimization

As shown in Table 2, F0 is near 2000 N. Therefore, for the three-objective optimization problem
presented in Equation‘(16), F0 and Fr are optimized simultaneously with the total volume of Vc

and Vp. For each algorithm, 351 individuals (N = 351) are selected. Finally, the three-objective

D
ow

nl
oa

de
d 

by
 [

B
ei

jin
g 

In
st

itu
te

 o
f 

T
ec

hn
ol

og
y]

 a
t 2

2:
24

 1
3 

N
ov

em
be

r 
20

12
 



16 G. Wang et al.
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Figure 9. Pareto fronts with three objectives obtained by the first run.

PFs are obtained, and the solutions for which Fr is smaller than 60 N are presented in Figure 9:

f1 = 2000

F0
; f2 = Fr; f3 = Vc + 7Vp

Vc min + 7Vp min
. (16)

Figure 9 shows the PFs obtained by the first run. The PF indicated by the (light) green dots is
obtained by DMDEPSO. Figure 10 illustrates the statistical results for the set coverage measure
of PFs via box-plots. From them, it is known that DMDEPSO has a better performance than the
other algorithms for the three-objective optimization problem. The average of ANNRS evalua-
tions is 182,238.9 times for DMDEPSO, 188,218.3 times for DMPMPSO, 186,812.1 times for

D
ow

nl
oa

de
d 

by
 [

B
ei

jin
g 

In
st

itu
te

 o
f 

T
ec

hn
ol

og
y]

 a
t 2

2:
24

 1
3 

N
ov

em
be

r 
20

12
 



Engineering Optimization 17

0.4

0.5

0.6

0.7

0.8

0.9

1

ζ:(A,B) (A,C) (A,D) (A,E) (A,F)(A¢,E) (A¢,F)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ζ:(B,A) (C,A) (D,A) (E,A) (F,A)(E,A¢ ) (F,A¢ )

(a) (b)

Figure 10. Set coverage of three-objective problem.

Table 3. Six design schemes obtained by three-objective optimization.

Symbol 3C1 3C2 3C3 3C4 3C5 3C6

Parameters δ (mm) 2.80 1.35 2.62 2.92 2.13 1.95
τm (mm) 10.94 10.94 22.01 23.16 23.23 23.33
dh (mm) 2.00 2.00 2.09 5.66 4.39 5.28
ωs (mm) 10.00 10.00 12.97 12.88 13.64 13.18
τe (mm) 4.73 12.00 7.37 11.99 12.00 11.84
dc (mm) 12.00 11.99 11.95 10.26 10.65 10.48

Tasks F0 (N) 643.53 1221.40 1482.67 2351.75 2686.12 3060.82
Fr(N) 0.14 46.16 0.02 5.55 27.67 56.91

Vc (cm3) 1203.24 1285.78 1571.34 1395.86 1612.58 1516.99
Vp (cm3) 93.48 93.44 196.16 562.11 433.41 528.16

DMWDEPSO, and 190,029.4 times for dMOPSO, but only 175,851 times for MOEA/D-DE and
NSGA-II consistently.

The Pareto front denoted by A′ is immediately output by DMDEPSO when ANNRS evaluates
175,851 times. The statistical results for set coverage are shown in Figure 10. The results also
show that DMDEPSO performs better than MOEA/D-DE and NSGA-II for the three-objective
optimization problem with the same number of ANNRS evaluations.

Table 3 lists six optimal designs from the PF shown in Figure 9(f). Then the performance of
these optimal designs is evaluated by FEA, and the forces are shown in Figure 11 respectively.

From Table 3, it is known that the values of F0 cover a wide range while Fr is smaller than
60 N. Because f3 is integrated from Vc and Vp, Vc and Vp cannot be known directly. So in the next
section, Vc and Vp are analysed separately to design more reasonable sizes of coils and PMs.

4.3. Four-objective optimization

To optimize four tasks simultaneously with four objectives, the optimization problem is presented
in Equation (17). Let N = 455 for each algorithm. After all algorithms are executed 30 times,
several PFs are obtained:

f1 = 2000

F0
; f2 = Fr; f3 = Vc

Vc min
; f4 = Vp

Vp min
. (17)
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Figure 11. Forces of the six selected optimal designs with three objectives.

Figure 10 illustrates the statistical results for the set coverage measure of PFs via box-plots.
It also shows that DMDEPSO has the best performance compared with the other algorithms for
the four-objective optimization problem. The average of ANNRS evaluations is about 234,431
times for DMDEPSO, 240,981.7 times for DMPMPSO, 238,981.1 times for DMWDEPSO,
and 243,531.5 times for dMOPSO, but only 227,955 times for MOEA/D-DE and NSGA-II
consistently.

The Pareto front denoted by A′ is immediately output by DMDEPSO when ANNRS evaluates
227,955 times. Figure 12 shows the statistical results for set coverage. It is known that DMDEPSO
also outperforms MOEA/D-DE and NSGA-II for the four-objective optimization problem with
the same number of ANNRS evaluations.

There exist eleven solutions with F0 larger than 3000 N and Fr smaller than 60 N from the PF
obtained by DMDEPSO, and six of them are listed in Table 4. Then performance of these optimal
designs is evaluated by FEA, and the forces are shown in Figure 13 respectively.

As listed in Table 4, 4C1 and 4C4 have larger Vp and smaller Vc, while 4C2, 4C3 and 4C6
are just the opposite. But the combination of Vc and Vp, presented as f3 in Equation (16), cannot
distinguish the differences of these volumes. So it is necessary to separate them for simultaneous
optimization. The larger is the PM volume, the higher the cost of manufacture. Moreover, a large
motor winding volume will have the disadvantages of heavy mover mass, high electrical energy
cost and extra generated heat. Therefore, 4C5 is chosen as the the final design with proper PM
and winding volume.
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Figure 12. Set coverage of four-objective problem.
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Table 4. Six design schemes obtained by four-objective optimization.

Symbol 4C1 4C2 4C3 4C4 4C5 4C6

Parameters δ (mm) 1.93 1.74 1.71 2.12 1.70 1.62
τm (mm) 22.80 22.93 22.97 23.33 21.50 22.95
dh (mm) 5.12 3.61 3.66 5.27 5.00 3.59
ωs (mm) 13.22 14.03 13.48 13.20 13.40 13.46
τe (mm) 11.65 10.52 10.80 11.87 10.74 10.92
dc (mm) 10.73 10.02 10.05 10.23 10.50 10.19

Tasks F0 (N) 3011.46 3018.02 3020.75 3055.70 3072.21 3102.59
Fr(N) 50.24 59.41 57.31 55.90 59.52 59.09

Vc (cm3) 1516.12 1799.87 1726.73 1525.61 1581.94 1725.95
Vp (cm3) 502.68 341.52 346.94 522.77 459.30 341.14

Figure 13. Forces of the six selected optimal designs with four objectives.

5. Conclusions

In this article, a hybrid optimizer based on particle swarm optimization and differential evolution,
named DMDEPSO, is proposed for TPMLSM design taking into account multiple objectives
including thrust, ripple, PM volume and winding volume. The main ideas in the proposed
DMDEPSO can be summarized by the following four aspects.

(i) ANNRS, which is equivalent to a nonlinear multi-modal black-box model, is adopted to
evaluate the objectives for reducing the time consumption.

(ii) A decomposition method is used to decompose the MOP into a number of SOSs with
normalized objectives. Each SOS is associated with a constant weight vector.

(iii) All the SOSs are simultaneously optimized by population-based evolutionary algorithm,
which can find several Pareto optimal solutions simultaneously in a single run.

(iv) The hybridization between PSO and DE contributes to a better tradeoff between exploration
and exploitation in which PSO utilizes the information of the particle and its neighbourhood,
and DE evolves any continually stagnated particle by two particles randomly chosen from
the whole swarm.

TPMLSM is optimized based on DMDEPSO taking account of the different of objectives.
Finally, the optimized TPMLSM has desirable PM volume and winding volume, with a thrust
larger than 3000 N, which exceeds the requirement, and a ripple lower than 60 N, which meets
the requirement. Also, according to the performance comparisons with chosen algorithms,
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20 G. Wang et al.

DMDEPSO has shown its excellence for finding the Pareto solutions to the TPMLSM opti-
mization problem. Future work will involve multidisciplinary design optimization taking into
consideration multi-physical field coupled phenomena.
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