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COMMUNICATIONS AND FORUM

Distributed rigid formation
control algorithm for
multi-agent systems

Hu Cao, Yongqiang Bai and Huagang Liu
School of Automation, Beijing Institute of Technology, Beijing, China

Abstract

Purpose – Rigidity of formation is an important concept in multi-agent localization and control
problems. The purpose of this paper is to design the control laws to enable the group to asymptotically
exhibit the flocking motion while preserving the network rigidity at all times.

Design/methodology/approach – The novel approach for designing control laws is derived from a
smooth artificial potential function based on an undirected infinitesimally rigid formation which
specifies the target formation. Then the potential function is used to specify a gradient control law,
under which the original system then becomes an orderly infinitesimally rigid formation.

Findings – The strong relationship between the stability of the target formation and the gradient
control protocol are utilized to design the control laws which can be proved to make the target
formation stable. However, the rigidity matrix is not utilized in the design of control law. Future
research will mainly focus on formation control with the relationship of rigidity matrix.

Originality/value – The value of this paper is focused on the control laws design and the control
laws could enable the group to asymptotically exhibit the flocking motion while preserving the
network rigidity at all times. Also the detailed simulations and experiments are given to prove that the
novel approach is available.

Keywords Control systems, Programming and algorithm theory, Robots, Graph rigidity,
Multi-agent systems, Gradient control, Formation control, Potential function, Flocking control

Paper type Research paper

1. Introduction
Formation control of multi-robot networks is an area of ongoing research in control
systems as witnessed by an increasing number of contributions in recent years. Among
the older contributions, we note, Cortes (2008), Lee and Spong (2006), Tanner et al.
(2003a, b), Wen et al. (2010), Francisco and Juan (2006) and Emilie and Yves (2001).
Formation problems are particularly interesting due to their possible application in
multi-robot networks formed using reconfigurable sensor networks. A creative
extension of sensor networks is to make the network devices mobile, creating a
reconfigurable sensor network which immediately gives rise to a multi-agent control
problem (Olfati-Saber, 2006; Hur and Ahn, 2010; Fidan et al., 2007; Anderson et al., 2008).
Maintaining a specific formation for a reconfigurable sensor network is more and more
necessary in order to gather more data.
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In the formation control problem, graph theory plays a natural role and especially the
study of graph rigidity has intrigued lots of mathematicians and researchers (Laman,
1970; Jackson and Jordan, 2005; Fang and Morse, 2008; Dimarogonas and Johansson,
2008, 2009; Zhang and Leonard, 2006). The potential function approaches are generally
used to design distributed control laws in rigidity formation control. Aspnes et al. (2006)
studies a problem that is independent of the reconfigurability of the network. The
network localization problem is solvable if three beacons are in a general position and
the graph of known distances is generically globally rigid. The use of rigidity in
Aspnes et al. (2006) shows the interesting relationship between the concept of rigidity
and problems involving formations. This leads naturally to the idea of designing a
formation control based on rigid graphs. This is an approach to formation control taken
by Olfati-Saber and Murray (2002). They use a double integrator model for point mass
robots and they propose using rigid graph theory to define the formation. Olfati-Saber
and Murray (2002) also propose a gradient control law involving prescribed distances
and they also give a proof of stability based on the LaSalle invariance theorem. The proof
does not analyze all equilibrium of the control law. The closed-loop dynamics are not
proved to be locally Lipschitz. Also, the control law uses global velocity measurements
to stabilize double integrators. Finally, although a set stability result for the equilibrium
set is claimed, but there are more simulations and experiments in the equilibrium set.
In this paper, we use similar ideas with rigidity theory to formulate a control problem
based on distances between agents. As with Olfati-Saber and Murray (2002) and Absil
and Kurdyka (2006), a gradient control law is derived and it is shown to be locally
asymptotically stable. However, there are important differences between our work and
theirs, and these lie in that this paper proposes a novel formation control approach with
rigidity theory, and lots of simulations and experiments prove that this novel approach
is available.

This paper is organized as follows. In Section 2, we define the notations about graph
rigidity and rigid matrix which are used throughout this paper. The gradient control law
for rigid formation generation is introduced in Section 3. Then, in Section 4, simulations
and experiments are presented to demonstrate its validity as a quantitative
measurement of formation rigidity. Finally, conclusions are given in Section 5 with
some prospective work related to the work in this paper.

2. Preliminaries
A. Graph rigidity
To introduce graph rigidity we define G ¼ (V, E ) to be an undirected complete graph
with n vertices. Define the composite vector p ¼ ð p1; p2; . . .pnÞ [ R 2n and a pair (G, p).

Also we define the rigidity function associated with the framework (G, p) as the
function gG : R 2n ! R jEj:

gG :¼ ð . . . ; kpk 2 pjk
2
; . . .Þ ð1Þ

The ith component kpk 2 pjk
2

corresponds to the edge ei of E.
There are three similar definitions of rigidity in graph: rigidity, global rigidity, and

infinitesimal rigidity (Krick et al., 2008; Asimow and Roth, 1978).
Definition 2.1. A framework (G, p) is rigid if there exists a neighborhood U , R 2n

of p such that:
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g21
G ðgGð pÞÞ> U ¼ g21

K ðgKð pÞÞ> U ð2Þ

where K is the complete graph with the same vertices as G.
Definition 2.2. A framework (G, p) is globally rigid if g21

G ðgGð pÞÞ ¼ g21
K ðgKð pÞÞ.

Definition 2.3. A framework (G, p) is infinitesimally rigid in the plane if
dim(ker JgG( p)) ¼ 3, or if:

rank J gGð pÞ ¼ 2n2 3 ð3Þ

where JgG( p) is rigidity matrix and it will be explained in part B.
Definition 2.4. Point p are regular points of the graph G with n vertices if:

rank J gGð pÞ ¼ max{rank J gGðqÞjq [ R 2n} ð4Þ

From Definition 2.4, we know the following theorem.
Theorem 2.1. (Asimow and Roth, 1978) a framework (G, p) is infinitesimally rigid if

and only if (G, p) is rigid and p are regular points.
Theorem 2.1 tells us that some framework is rigid but not infinitesimally rigid.

However, if the framework is infinitesimally rigid, then it is sure to be rigid. Figure 1
shows these properties with two examples. It is easily to compute that rank
JgG(q) ¼ 2n 2 3 in Figure 1(a) and rank JgG(q) , 2n 2 3 in Figure 1(b), so Figure 1(a) is
rigid and infinitesimally rigid; Figure 1(b) is rigid but not infinitesimally rigid, as p are
not regular points. In general, the rigid but fail to be infinitesimally rigid graph almost
have parallel or collinear edges. In this paper, rigid means infinitesimally rigid.

B. Rigidity matrix
Based on Part A, in framework (G, p) we define dij ¼ kpi 2 pjk the Euclidean distances
between pairs of points ( pi, pj) and they are constant. Also, we can get (Krick et al., 2008):

ð pi 2 pjÞ · ð pi 2 pjÞ ¼ d2
ij i; j [ {1; 2; . . . ; n} ð5Þ

Assuming a smooth trajectory, equation (4) can be differentiated:

2ð pi 2 pjÞ · ð_pi 2 _pjÞ ¼ 0; i; j [ {1; 2; . . . ; n}; t $ 0 ð6Þ

where bpipi is the velocity of point pi, and we collect equation (5) into a new equation:

J gGð pÞ_p ¼ 0 ð7Þ

Figure 1.
The two possible
examples with rigid
framework

(a) (b)
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where J gGð pÞ_p ¼ 0; _p ¼ column _p1; _p2; . . ._pn, and JgG( p) is the rigidity matrix with
structure m £ nd where m ¼ C2

n.

3. Gradient control laws
A. Problem formulation
Consider a group of N agents moving in an n-dimensional Euclidean space, and each
one has point mass dynamics. A continuous-time model of the system is described by:

_xi ¼ vi

_vi ¼ ui i ¼ 1; 2; . . . ;N
ð8Þ

where xi ¼ ðxi1; xi2; . . . ; xinÞ
T [ Rn is the position vector of agent i, vi ¼

ðvi1; vi2; . . . ; vinÞ
T [ Rn is the velocity vector, ui ¼ ðui1; ui2; . . . ; uinÞ

T [ Rn is the
control input acting on agent i. The relative position vector between agents i and j is
represented by xij ¼ xi 2 xj. In order to fulfill the control objective, ui [ R n should be
designed to enable the group to achieve the desired rigid flocking motion and to
preserve the network rigid structure as time evolves.

B. Equations
It is well known that the collective objective of flocking motion can be described by the
relative positions and relative velocities of the agents. Hence the desired relative
positions are uniquely determined by utilizing the flocking vector
f ¼ ð f 1; f 2; . . . ; f N Þ

T [ RmN ; f i [ Rm;;i. Define the goal topology of a multi-agent
system as Gg ¼ ðVg;EgÞ, the edge set is given by:

Eg ¼ {ðni; njÞkj f i 2 f jk ¼ dij , Rd; ni; nj [ Vg; i – j} ð9Þ

where Rd is the communication radius of agents. Therefore, the objective of rigid
flocking formation control for multi-agent systems can be directly described as follows.

Definition 3.1. (Stable infinitesimally rigid formation) give a flocking vector
f ¼ ð f 1; f 2; . . . ; f N Þ

T and assume that Gg ¼ ðVg;EgÞ is connected. Then a
multi-agent system is a stable infinitesimally rigid one iff for any ðni; njÞ [ Eg ,
it satisfies:

xi 2 xj ¼ f i 2 f j ¼ dij

vi ¼ vj

rank J gG ð f Þ ¼ 2n2 3

8>><
>>: ð10Þ

On the whole, the main idea of the proposed flocking control strategy is to relate the
desired rigid geometric configurations of the goal topology to the local or global
extremes of the group potential functions (Schneider and Wildermuth, 2005). The
distributed control law ui is designed by using the state information from agent i
and its neighbors hence can be described in the following form:

ui ¼

u1
i

2
X

j[NiðGcÞ
7xijV ijðkxijkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

u2
i

2
X

j[NiðGcÞ
aijðtÞðvi 2 vjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} ð11Þ
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where u1
i acts as the induced term for achieving the desired rigid configuration, u2

i
is the velocity consensus term and is responsible for aligning the agent velocities
to a common value. Vij represents the artificial potential function between agents
i and j. Under the assumption that the communication topology is connected while
the robots are in the radius of communication during the whole process of evolution,
it can be proved that the whole group will asymptotically achieve the desired stable
rigid motion. However, in practical situations, since it is required that all the
agents attain a common velocity while maintaining the desired group shape, it is
desired that Vij(t) ! 0 and xij(t) ! fij ;i; j [ V , where fij is the desired distance
between agents i and j in the goal topology. Furthermore, it is assumed that fij is
also compatible in the sense that fik þ fkj ¼ fij, ;i,j,k [ V. Then the rigid flocking
potential function Vij should be devised for the edges in Eij(t) > Eg based on the
following principles:

. Vij is always nonnegative and differentiable in (0, Rd); and

. Vij attains its unique global minimum value when kxijk obtains a predefined
desired distance:

VijðkxijkÞ ¼

a lnkxijk
2
þ b

kxijk
2 0 , kxijk #

ffiffi
b
a

q

a lnkxijk
2
þ b

kxijk
2 þ cos 1 þ

kxijk
2
2ðb=aÞ

R 22ðb=aÞ

� �
pþ 1

ffiffi
b
a

q
, kxijk , Rd

a lnkxijk
2
þ b

kxijk
2 þ 2 otherwise

8>>>>>><
>>>>>>:

ð12Þ

where a, b and Rd are positive constants such that b . (e/a), and Rd .
ffiffiffiffiffiffiffi
b=a

p
. Note that

the potential function Vij is everywhere continuous differentiable in the domain
(Figure 2), which could avoid the nonsmooth switching of the controllers brought by
dynamical changing neighboring relations due to the motion of agents.

Figure 2.
Smooth potential function
Vij for a ¼ 1
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By the definition of Vij, the total potential of agent i can be expressed as:

Vi ¼
j�Ni

X
VijðRÞ þ

j[Ni

X
VijðkxijkÞ ð13Þ

Note that during the course of motion, each agent regulates its position and velocity
based on the external signal and the state information of its neighbors. However, it is
known that, in reality, because of the influence of some external factors, the reference
signal is not always detected by all agents in the group. In this paper, the case where the
signal is sent continuously at any time is considered and we assume that there exists at
least one agent in the group who can detect it.

The gradient control protocol from 12 for the stable infinitesimally rigid formation
is in the following form:

ui ¼
j[Ni

X
2 7xiV ij 2

j[Ni

X
wijðvi 2 vjÞ ð14Þ

where vl [ R n is the desired common velocity and is a constant vector,wij $ 0;wij ¼ wji

and wii ¼ 0, i; j ¼ 1; 2; . . . ;N represent the interaction coefficients.

4. Simulations and experiments
In this section, the experimental set-up and the results of flocking with real mobile
robots in rigid formation are presented. The platform used in our experiment is the
Pioneer 3 mobile robots and Amigobots which are differential-drive mobile robots with a
unicycle-like kinematics. The PID controllers of the wheels velocity are developed by the
manufacture. The program of the robots is implemented in Cþþ and runs in real-time
on the robot’s onboard computer. The assumptions are given as follows.

The following parameters were empirically chosen based on both the system
dynamics and simulation results, while the fine-tuning was performed by trial and
error. The multi-robot systems consist of two Pioneer 3-AT and three Amigobots
wheeled mobile robots, the control period Dt ¼ 0.5 s and the communication radius are
uniformly set to R ¼ 2 m. Corresponding parameters for connectivity-preserving
artificial potentials and leader-follower potentials are c1 ¼ 2; c2 ¼ 1; c ¼ 0 and k ¼ 10,
respectively. Different from the simulations in Matlab, relative distance to nearby
vehicles and relative heading are considered here. The linear and angular velocities of
the robots are randomly chosen in the range of [0,1]m/s and [0,1]rad/s. Moreover, the
encoder resolution is such that a quantization of 0.6 cm/s and 6 deg/s, respectively. All
the simulations and experiments are conducted for 2-D flocking in real time simulation
software MobileSim and real indoor environment.

The snapshots of three robots with various kinds of color to reach the target rigid
formation are shown in Figure 3. For the former, the initial positions and headings of the
group are shown in Figure 3(a). Figure 3(b) demonstrates the aggregation process of the
swarm forced by the attraction/repulsion potentials which are mentioned in equation (12).
Figure 3(c) and (d) shows the stable states of the system in steady state, and the three robots
maintain the rigid formation moving. There are three kinds of color with robots trajectory
in the snapshots and the process for this experiment is represented obviously. The
worst-case rigidity index (w.r.i.) is adopted to measure the rigidity of formation (Zhu and
Hu, 2009). When the value of w.r.i. is 0, the formation is not rigid and the value of w.r.i of the
rigid formation must be more than 0. Larger the value is, more rigid the formation is.
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Table I gives the worst-case rigidity index of formations in Figure 3. We see that
Figure 1(a) is not rigid, but the others all keep the status of rigidity. It is obvious that
there robots are easy to form the rigidly target formation, so the values of w.r.i. of
Figure 1(b)-(d) are the same. However, it is different in Figures 4 and 5.

In a similar way, Figure 4(a)-(d) shows four typical snapshots of the system’s
formation evolution with five robots, and Table II is the content of the worst-case rigidity

Figure 3.
Simulation snapshots for
flocking of three wheeled
mobile robots

(a) t = 0 s (b) t = 17 s

(c) t = 30 s (d) t = 45 s

Formation No. of edges w.r.i Is rigid?

a 2 0 N
b 3 1.2 Y
c 3 1.2 Y
d 3 1.2 Y

Table I.
Rigidity indices of
formations in Figure 3
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index of formations in Figure 4. It is shown that the formation in Figure 4(b) is less rigid
than Figure 4(c) and (d) as it is less symmetric.

From the pictures it is apparent that the velocity synchronization of the robots can
be achieved, the distances between the interconnected robots are stabilized. Hence the
group finally exhibits the rigid flocking motion.

Corresponding video snaps of the flocking experimental results with a period of 85 s
are shown in Figure 5. Suppose that the start time t0 ¼ 0s. The initial state of the system
is shown in Figure 5(a), in which the robots are in a stochastic formation which satisfies
that the initial communication topology is connected. Figure 5(b) and (c) shows two
typical snapshots which exhibit that the robots recover to form a cohesive group due to
the potential function (12); Finally, the rigid formation of the swarm is shown in
Figure 5(d) at t ¼ 74 s, and Figure 5(e) and (f) shows that the five robots maintain the
rigid formation for 11 s. It is clear that the experiments are well consistent with the
corresponding simulation results.

Figure 4.
Simulation snapshots for
flocking of five wheeled

mobile robots

(b) t = 23 s(a) t = 0 s

(d) t = 56 s(c) t = 41 s
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Figure 5.
Flocking of five wheeled
mobile robots in indoor
environment

(a) t = 0 s (b) t = 12 s

(c) t = 26 s (d) t = 74 s

(e) t = 80 s (f) t = 85 s
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Comparing formation Figure 5(a)-(f) from Table III, it is clearly seen that with the
increased number of distance constraints, the value of worst-case rigidity index rises
accordingly, so the formation become more rigid with the moving by the potential
function control. Also, by the same distance constraints the symmetric formation is more
rigid than the asymmetric and it is shown in Figure 5(e) and (f).

5. Conclusions
This paper studies the formation stabilization problem for multi-robot systems and only
started on what is likely to be a fairly long road. A control algorithm to solve the
formation rigidity problem for nearly arbitrary formations is proposed. The strong
relationship between the stability of the target formation and the gradient control
protocol are utilized to design the control laws which can be proved to make the target
formation stable. Experimental validation of the undirected formation control is shown
on a multi-vehicle system. These experiments express that the formation control is
able to retain the rigidity formation. However, in fact there is a broader list of issues that
need to be addressed in the future and we record some as follows:

. The rigidity matrix is not utilized in the design of control law. We would like to
deal with the formation problem with the rigidity matrix and design the linear or
nonlinear laws, with the rigidity matrix varying or not in the course of the
motion.

. The worst-case rigidity index (w.r.i.) is an important tool for quantitative
measure of formation rigidity, and it can only characterize the rigidity of a static
formation. We wish to know if we want to measure the formation rigidity
continuously, what can be done to modify the w.r.i.

. In simulations and experiments, we use at most five robots here. If more robots
are provided, whether the control laws in this paper are effective and if not, how
to modify.

Formation No. of edges w.r.i Is rigid?

a 5 0 N
b 8 0.6116 Y
c 8 0.9889 Y
d 8 0.9889 Y

Table II.
Rigidity indices of

formations in Figure 4

Formation No. of edges w.r.i Is rigid?

a 5 0 N
b 5 0 N
c 6 0 N
d 8 0.2583 Y
e 10 1.6429 Y
f 10 2.5 Y

Table III.
Rigidity indices of

formations in Figure 5
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