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a  b  s  t  r  a  c  t

As  a  population-based  optimizer,  the differential  evolution  (DE)  algorithm  has  a very good  reputation  for
its competence  in global  search  and  numerical  robustness.  In view  of  the  fact  that  each  member  of  the  pop-
ulation is  evaluated  individually,  DE  can  be  easily  parallelized  in  a distributed  way.  This  paper proposes
a  novel  distributed  memetic  differential  evolution  algorithm  which  integrates  Lamarckian  learning  and
Baldwinian  learning.  In  the  proposed  algorithm,  the whole  population  is divided  into  several  subpopula-
tions  according  to  the  von  Neumann  topology.  In order  to  achieve  a  better  tradeoff  between  exploration
and  exploitation,  the differential  evolution  as an evolutionary  frame  is  assisted  by  the  Hooke–Jeeves  algo-
emetic algorithm
amarckian learning
aldwinian learning
ooke–Jeeves algorithm

rithm which  has  powerful  local  search  ability.  We  incorporate  the Lamarckian  learning  and  Baldwinian
learning  by  analyzing  their  characteristics  in  the  process  of migration  among  subpopulations  as  well  as in
the hybridization  of  DE  and  Hooke–Jeeves  local  search.  The  proposed  algorithm  was  run  on a set  of  clas-
sic benchmark  functions  and  compared  with  several  state-of-the-art  distributed  DE schemes.  Numerical
results show  that the proposed  algorithm  has  excellent  performance  in  terms  of  solution  quality  and
convergence  speed  for all test  problems  given  in this  study.
. Introduction

The differential evolution (DE) is a stochastic, population-based
lobal search and optimization method [1].  It uses the difference of
olutions to create new candidate solutions and one-to-one spawn-
ng competition scheme to select new individuals greedily. These
ttractive characteristics make DE retain the knowledge of good
olutions in the current population. DE, just like the particle swarm
ptimization (PSO) and genetic algorithm (GA) which have been
mplemented to various domains [2,3], has been proven to have a
ood performance on many real-world problems [4].  DE is good at
xploring the search space and locating the region of global optima,
ut it is slow at fine-tuning the solution [5].  Some modifications on
he basic DE can improve its performance, which can be grouped
nto two categories. One depends on the modifications of DE itself

ncluding its parameters, operator, and population structure [6,7];
nd the other focuses on hybridizing DE with different optimiz-
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ers such as additional local searchers and other population-based
metaheuristics (e.g. particle swarm optimizer) [8–10].

In the case of modifying the population structure of DE, a popular
way is dividing the whole population into multiple subpopulations
which evolve independently and exchange information mutually.
An important motivation behind the multiple-population strat-
egy is to maintain population diversity and achieve the parallel
search of the solution space. DE can be easily parallelized due to
the fact that each member of the population is evaluated individ-
ually. Tasoulis et al. [11] explored how differential evolution can
be parallelized by using a unidirectional ring topology and pro-
posed an algorithm, namely parallel differential evolution (PDE),
to improve both the speed and the performance of the method.
Besides, a lot of research investigated the migration policy of par-
allel differential evolution, including migration schemes, migration
frequencies, the number and size of subpopulations, and so on.
Specially, for solving the learning issue in fuzzy neural inference
system, Singh et al. [12] studied the parameterization of a parallel
distributed DE in detail and discussed the influence of different
interval and sizes of migration, as well as different number of

islands. Apolloni et al. [13] designed a modified version of the
PDE in a generic way, namely island based distributed differen-
tial evolution (IBDDE). A set of five parameters was integrated to
elaborate on the main principles of the migration. A distributed
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www.elsevier.com/locate/asoc
mailto:zcm10606@163.com
mailto:chenjie@bit.edu.cn
mailto:brucebin@bit.edu.cn
dx.doi.org/10.1016/j.asoc.2012.02.028


2  Comp

v
t
t
d
o
n
e
f
a
s
r
e
d
t
i
c
r

t
c
[
b
m
M
c
a
e
a
p
h
(
t
c
t
t
d
i
a
a
g
M
t
e
i
p
t

m
L
p
i
b
p
t
H
I
t
t
a
i

p
N
t
t
b

948 C. Zhang et al. / Applied Soft

ersion of the differential evolution (DDE) was coupled with affine
ransformation and mutual information maximization to perform
he registration of remotely sensed images in [14]. This algorithm
iffers from PDE and IBDDE by the topology it adopts. Instead
f a unidirectional ring, DDE uses a locally connected topology
amed torus topology. Based on comparative experiments, Falco
t al. indicated that DDE is very promising to achieve better per-
ormance. Additionally, Izzo et al. [15] presented a heterogeneous
synchronous island model for DE. The results confirmed that
uch a model could improve the reliability and speed of the algo-
ithm and find significantly better solutions. Recently, Matthieu
t al. [16] designed an adaptive mechanism for the scale factor in
istributed differential evolution schemes, called “F” adaptive con-
rol parallel differential evolution (FACPDE). The empirical results
n [14] showed that the employment of multiple scale factors
an greatly improve the performance of the distributed algo-
ithm.

In the context of search and optimization, it is worth noting
hat the key design issue of evolutionary algorithms lies in the suc-
essful promotion of tradeoff between exploration and exploitation
17]. Krasnogor and Smith [18] pointed out that the population-
ased intelligent methods combining local search methods, called
emetic algorithms (MAs) which were originally proposed by
oscato and Norman for the traveling salesman problem [19],

an lead to a better tradeoff between exploration and exploitation
nd thereby improved performance. Now, the term MA is widely
mployed as a synergy of evolutionary or any population-based
pproach with separate individual learning or local improvement
rocedures for problem solving [20]. There are two  mechanisms on
ow learning influences evolution. One is the Lamarckian learning
L-learning) in which the characteristics of phenotype and geno-
ype acquired by an organism during its lifetime is transferred and
an be passed on to the organism’s offspring directly. Another is
he Baldwinian learning (B-learning), different from the L-learning
hat the acquired genotype traits are not inherited to its offspring
irectly, but adaptive learning can guide the course of evolution

ndirectly in a way that learning alters the shape of search space
nd thereby provides good evolutionary paths towards individu-
ls. The experimental results of [20] show that the L-learning in
eneral has a higher performance than the B-learning, and most
As  employ the L-learning mechanism to achieve the combina-

ion of global search and local search. At the same time, Nguyen
t al. [20] also pointed out that the L-learning cannot distinguish
ndividuals effectively, easily leading to stagnation. Though com-
aratively time-consuming, it is easier to obtain global optima by
he B-learning.

In view of above, this paper proposes a novel distributed
emetic differential evolution (abbr., DMDE) which integrates the

-learning and the B-learning. In the proposed algorithm, the initial
opulation is distributed over multiple subpopulations accord-

ng to the von Neumann topology. All subpopulations interact
y migrating their respective best individual to neighboring sub-
opulations and replacing the worst ones partly or entirely. In
he evolutionary loop, DE is in charge of global search and the
ook–Jeeves algorithm assists DE to achieve local improvement.

n order to balance exploration and exploitation, we  incorporate
he L-learning and the B-learning by analyzing their characteris-
ics of individual learning. Then we achieve the cooperation in two
spects: one is the migration among subpopulations and the other
s the hybridization of DE and the Hook–Jeeves algorithm.

The presented algorithm was run on a set of benchmark
roblems and compared with several distributed DE schemes.

umerical results show that the proposed DMDE makes a good

radeoff between exploration and exploitation and performs better
han three state-of-the-art distributed DE algorithms for tackling
oth unimodal and multimodal problems.
uting 13 (2013) 2947–2959

The remainder of this paper is organized as follows. In Section
2, a basic DE algorithm is briefly introduced. Section 3 proposes the
new distributed DE—DMDE. Section 4 analyses the computational
complexity of the proposed scheme and presents the experimental
results on benchmark functions. This section gives computational
complexity and performance comparisons with several state-of-
the-art distributed DE schemes as well as a discussion of the
obtained results. Conclusion is summarized in Section 5.

2. Basic differential evolution

Differential evolution (DE) is a population-based metaheuristic.
DE/rand/1/bin is one of the classic and most successful DE variants
[21]. It generates new solution vectors by adding the weighted dif-
ference of two randomly selected population members to the third
member, and forms the final trial vector with binomial crossover.
In addition, DE employs a one-to-one spawning logic which allows
replacement of an individual only if the offspring has better fitness
value than its corresponding parent.

DE evolves NP D-dimensional individual vectors xi,g, i = 1, 2, . . .,
NP, where g denotes the current generation, and NP is the popula-
tion size. The initial population is randomly generated within the
whole search space. After initialization, DE performs in sequence
three vector operations: differential mutation, crossover and selec-
tion.

A number of variations to the classic DE have been developed.
Different DE strategies differ in the way that the base vector is
selected, the number of difference vectors used, and the way that
crossover points are determined. In order to characterize these
variations, a general notation is adopted, namely DE/x/y/z [21]. x
represents a string denoting the vector to be perturbed, y is the
number of difference vectors considered for perturbation of x, and
z is the type of crossover being used. A brief introduction on the
well-known DE variant DE/rand/1/bin is given in the following.

2.1. Differential mutation

For each target vector xi,g, {i = 1, 2, . . .,  NP}, the corresponding
mutant vector v is generated as follows:

v = xr0,g + F · (xr1,g − xr2,g), r0, r1, r2 ∈ {1, 2, . . . , NP}. (1)

where xr0,g is a base vector and the indexes satisfy r0 /= r1 /= r2 /= i.
It is obvious that at least four individuals are needed to implement
the above mutation operation, implying that NP ≥ 4. The scaling
factor F lies within the range (0, 2), usually less than 1 [22].

2.2. Crossover

After mutation, the target vector (individual) is mixed with the
mutant vector, and the following crossover operation is used to
form the final trial vector:

ui,g,j =
{

vi,g,j, if rand(0,  1) ≤ CR or j = jrand

xi,g,j, otherwise
, (2)

where i = 1, 2, . . .,  NP and j = 1, 2, . . .,  D. CR ∈ (0, 1) is the crossover

rate that controls the probability of creating components for the
trial vector u from the mutant vector v. The index jrand is an integer
randomly chosen from the set {1, 2, . . .,  NP}, ensuring that at least
one component of the trial vector is provided by the mutated vector.
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Fig. 1. von Neumann topology.

.3. Selection

The solution surviving to the next generation is selected from
he target individual and its corresponding trial vector according
o the following rule:

i,g+1 =
{

ui,g if f (ui,g) ≤ f (xi,g)
xi,g otherwise

, (3)

here f(·) is the objective function to be minimized. In fact, the
election scheme is a one-to-one tournament replacement. The DE
rial vector is not compared against all individuals, but only against
ts counterpart in the current generation.

. A novel distributed memetic differential evolution:
MDE

.1. Migration mechanism in distributed DE

In the new distributed differential evolution, the initial pop-
lation P is divided into m subpopulations and the size of each
ubpopulation is NPi = NP/m (i = 1, 2, . . .,  m). These subpopulations
re arranged by the von Neumann topology [23]. Only those indi-
iduals that are close to each other within the topology are allowed
o interact during the evolution. In the von Neumann topology
tructure, subpopulations are denoted as nodes. Each node has four
eighbors (see Fig. 1). The current node is displayed in black, and

ts neighboring nodes are indicated in grey. The node under exam-
nation is isolated from all the other white ones. Each node only
xchanges information with its neighbors and has no direct effect
n other nodes. However, each node provides and receives infor-
ation within its neighborhood at the same time, thus making

nformation communicated throughout the topology.
The individuals of the ith subpopulation (Pi(i = 1, 2, . . .,  m))  in

ach node use the DE algorithm as the main frame to evolve and
articipate in the competition to select the best individuals. Every

 generations, the best individual in each node will replace the
orst individual of its neighbor nodes. The migration mechanism

mong nodes enables the information to be communicated in the
hole population, which is beneficial to explore the solution space

nd find better solutions. Since the replacement will generate the
ame solutions in subpopulations and lower the diversity of the

hole population, the search process may  stagnate in certain cases.

shibuchi and Narukawa [24] proposed a multi-island model using
ither the L-learning or the B-learning for multiobjective knapsack
roblems. The 30% islands implement the L-learning in a model
uting 13 (2013) 2947–2959 2949

with ten islands and the rest perform the B-learning. Inspired by the
idea of [24], in the information migration process, we  integrate the
L-learning and B-learning, and achieve their cooperation by ana-
lyzing the traits of the two  learning mechanisms as described in
Section 3.3.

3.2. Memetic DE

Differential evolution (DE) is a reliable and versatile function
optimizer. It generates an offspring until an individual with bet-
ter performance is generated. However, DE can be subjected to
stagnation in cases where no offspring individuals outperform the
corresponding parents for a large number of generations. In order to
prevent stagnation, and more generally, to reach high performance
within the DE framework, the DE can be enhanced by means of a
proper hybridization with some local search algorithms.

The local search process is achieved by the Hooke–Jeeves algo-
rithm [25] which is simple and efficient. In the Hooke–Jeeves
algorithm, a combination of exploratory move and pattern move
is made iteratively to search the optimum solution [26]. In the
exploratory move, the current point x1 is perturbed in positive
and negative directions with a scalar predefined step size  ̨ along
every one of the d dimensional axes at a time, and the best point
x2 is recorded. The current point x1 is changed to the best point x2
at the end of each perturbation if f(x2) < f(x1) (for minimization);
otherwise, the step size  ̨ is reduced to continue the process. The
exploratory move terminates until all dimensions are exhausted,
and the best points are used to perform the pattern move.

The pattern move acts as follows: after the kth exploratory
move, xk+1 is obtained as the current base point. Repeat the suc-
cessful moves in a combined pattern move, that is:

x = xk+1 + ˇ(xk+1 − xk),  ̌ > 0. (4)

If the new point x has better fitness, take it as the new base point.
In DE, the greedy competition selection scheme can lead to

stagnation. In view of this, we combine the Hooke–Jeeves local
search with the selection scheme of DE. For each individual, when
f (xcrossover) > f (x) (xcrossover denotes the solution after the crossover
in DE), we employ a probability value p = g/gmax to judge whether
the Hooke–Jeeves algorithm is used to update DE, where g is the
current generation and gmax is the allowable maximum genera-
tion. The Hooke–Jeeves algorithm is applied if and only if rand(0,
1)< p ; otherwise, no update occurs. So, in the early stage of the
memetic DE algorithm, in order to keep population diversity, the
Hooke–Jeeves algorithm is rarely used and DE  is the main evolution
method. In the later evolution stage, the Hooke–Jeeves algorithm
has larger opportunity to be applied for enhancing the local search
ability and improve the precision of solutions.

3.3. Cooperation of Lamarckian learning and Baldwinian learning

There are two  learning mechanisms to combine evolutionary
search and local search heuristics. One of the mechanisms is the
L-learning. In this mechanism the solutions generated during the
course of evolution are fine-tuned. After individual improvement,
the solution itself and its associated fitness value are modified.
The modified solution is then inserted back into the population
for subsequent evolutionary processing. The other mechanism is
the B-learning. It is similar to the L-learning in that the evolution-
ary search is interleaved with local search and the solutions’ fitness
values are modified by local search. However, instead of inserting
the solution obtained by local improvement into the population, the

original solution before the application of local search is retained
for subsequent evolutionary processing [27]. The results obtained
in [28] show that, even if a solution has an undesirable inborn fit-
ness, it may  still have a high chance to find the global optimum,
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Table 1
The dynamics of CV with the solution and fitness.

Schwefel 2.22: f2(x) =
2∑

i=1

|xi| +
2∏

i=1

|xi|, |xi| < 10

x1 x2 x3 x4 f(x1) f(x2) f(x3) f(x4) CV

g = 0 (9.00, 7.82) (−5.37, 5.24) (2.13, −0.87) (−0.28, −9.62) 87.28 38.81 4.86 12.61 1.03
g  = 10

L (−1.03, 0.06) (−1.09, −0.02) (−1.02, 0.066) (−1.07, −0.01) 1.16 1.13 1.15 1.11 0.01
B (9.00, 7.82) (−5.37, 5.24) (2.13, −0.87) (−0.28, −9.62) 9.67 36.14 4.86 12.55 0.88

g  = 100
L (−1.06, −0.00) (−1.06, −0.00) (−1.06, −0.00) (−1.06, −0.00) 1.06 1.06 1.06 1.06 0
B  (9.00, 7.82) (−5.37, 5.24) (2.13, −0.87) (−0.28, −9.62) 9.67 24.91 2.24 0.81 1.17

Griewank: f7(x) = 1
4000

2∑
i=1

(xi)
2 −

2∏
i=1

cos

(
xi√

i

)
+ 1, |xi| < 600

x1 x2 x3 x4 f(x1) f(x2) f(x3) f(x4) CV

g = 0 (540.15, 469.55) (−322.63, 314.51) (128.21, −52.23) (−16.82, −577.79) 128.51 51.29 6.39 84.96 0.76
g  = 10

L (19.00, 52.25) (8.56, 29.73) (15.82, 50.62) (2.49, −34.94) 0.56 0.76 0.35 0.60 0.28
B (540.15, 469.55) (−322.63, 314.51) (128.21, −52.23) (−16.82, −577.79) 40.38 51.29 6.39 28.17 0.61
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g  = 100
L (18.68, 17.95) (18.69, 17.95) (21.89, 13.55) 

B  (540.15, 469.55) (−322.63, 314.51) (128.21, −52.23) 

hile the Lamarckian strategy, though faster, may  lead to a local
ptimum.

These characteristics of the L-learning and the B-learning
rompt us to investigate the efficiency of the cooperation of these
wo learning mechanisms. To realize this cooperation, we  employ
he coefficient of variance (CV) [29], a statistical measure of the
ispersion of data points in a data series. It is calculated as follows:

V = �

� + rp
(5)

here � and � represent the standard deviation and mean of a
roup data, respectively and rp is a small non-negative number to
nsure that CV has a meaningful denominator when � = 0. The coef-
cient of variation represents the ratio of the standard deviation to
he mean, and it is a useful statistic for comparing the degree of
ariation from one data series to another, even if the means are
rastically different from each other. The higher the CV,  the greater
he dispersion in the variable. The lower the CV,  the smaller the
esiduals relative to the predicted value.

In order to illustrate the dynamics of CV,  Table 1 shows the
hange of CV with the solution and fitness for the 2-dimensional
chwefel 2.22 function and Griewank function.

The former function is unimodal and the later is multimodal
30]. DE/rand/1bin is employed as the evolution frame. The param-
ters F and CR are set as 0.5 and 0.9 respectively according to the
iterature [31]. Besides, we choose NP = 4 for ease of comprehen-
ion. The best fitness values of the L-learning and B-learning in the
iven generation are highlighted in boldface.

The L-learning and B-learning (L and B in Table 1) operate on
he initial individuals respectively. From the values of the individ-
als xi(i = 1–4), their fitness f(xi) and the CV after L-learning and
-learning, some conclusions can be achieved as follows:

The CV values after L-learning are smaller than the ones after
B-learning, e.g. 0.01 < 0.88 and 0 < 0.17 for f2; 0.28 < 0.61 and

0.01 < 0.11 for f7.
At the earlier stage of DE, e.g. when g = 10, the L-learning can gain
better fitness results than B-learning, e.g. 1.13 < 4.86 for f2 and
0.35 < 6.39 for f7.
1.89, 13.55) 0.18 0.18 0.18 0.18 0.01
16.82, −577.79) 40.36 35.30 0.09 1.47 1.11

• At the later stage of DE, e.g. when g = 100, the B-learning can gain
better fitness results than L-learning, e.g. 0.81 < 1.06 for f2 and
0.09 < 0.18 for f7.

The conclusions acquired from Table 1 above are in accordance
with the ones in [28]. So, CV can be used as a diversity index to reflect
the influence of L-learning and B-learning on the individuals.

In our method, the cooperation scheme is applied in the
hybridization of DE and the Hooke–Jeeves algorithm as well as the
migration among subpopulations. In the process of the hybridiza-
tion between DE and Hooke–Jeeves, we calculate the CV of the
fitness before and after the hybridization, respectively. Denote the
former by CV1 and the later by CV2. If CV1 < CV2, the population
updated by the hybridization of DE and the Hooke–Jeeves algorithm
has the greater dispersion. On the occasion, more undesirable indi-
viduals are likely to slow down the evolution. So, the L-learning is
expected to find efficient solutions faster in favor of exploitation.
If CV1 ≥ CV2, the population after the hybridization has smaller or
identical dispersion. In this situation, it is potential to find better
solutions but stagnate around local optima. So, the B-learning is
required to keep the diversity of population to benefit exploration.
Regarding the information migration in distributed DE, each sub-
population exchanges information with its neighbors only if the
new immigrant has a better performance than the worst one in the
target subpopulation, i.e. f (xk

best
) < f (xk+n

worst), n = 1–4. The coopera-
tion of the L-learning and the B-learning is also considered in the
migration process which can be regarded as a way of social learn-
ing at subpopulation level. Denote the CV of the fitness before the
migration by CV3 and that after the migration by CV4, respectively.
The cooperation policy is akin to that employed in the process of the
hybridization between DE and Hooke–Jeeves. If CV3 < CV4, the sub-
population that has exchanged the information with its neighbors
obtains greater dispersion. It is difficult to find competitive solu-
tions in short time and the whole population will evolve slowly.
Thereby, the L-learning is executed to replace the worst individu-
als in each subpopulation with the best ones in its neighbors. In this

situation, the subpopulation not only retains its best individual but
also absorbs the best individuals of its neighbors. It is beneficial to
accelerate the evolution and enhance the exploitation. If CV3 ≥ CV4,
the subpopulation through the information migration has smaller
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r identical dispersion and the whole population contains more
imilar or identical individuals, which is disadvantageous to the
xploration of the solution space. Under this circumstance, the B-
earning takes effect, that is, only the fitness values of the worst
ndividuals in each subpopulation are replaced in the migration.
ue to the fitness sharing through migration, the worst individuals

n each subpopulation before migration may  not be the worst ones
n subsequent generations. In this way, the fast convergence toward
he so-far-best solutions is moderated, which helps to maintain
opulation diversity and explore more superior solutions in the
ucceeding evolution.

For the sake of clarity, the pseudo-code illustrating the principle
f DMDE is shown in Fig. 2.

The following two examples are given to elaborate on the coop-
ration of L-learning and B-learning in the hybridization of DE and
ooke–Jeeves algorithm as well as the migration among subpop-
lations respectively. The 2-dimensional Schwefel 2.22 function is
pplied and 4 individuals are acquired randomly for conciseness.

xample 1. Referring to Fig. 3, the hybridization acts on
very individual sequentially in accordance with the conditions

 (xcrossover) > f (x) and rand(0, 1) < p shown in Section 3.2.  The three
arameters of DE were set as the ones corresponding to Table 1. The
tep size  ̨ was set to be 0.25 × b (b: the variable value of the current
imension for the base point x) and the coefficient  ̌ was set to be

 in Hooke–Jeeves algorithm (H–J in Fig. 3) in accordance with the
uggestions given in [33].

For x1 and x4, the hybridization conditions are not satisfied
nd they retain the results of DE. The hybridization conditions are
chieved for x2 and x3. So the B-learning is adopted for x2 due
o CV1 > CV2 and the L-learning is considered for x3 because of
V1 < CV2. From the results in Example 1, it can be seen that the
ooperation of L-learning and B-learning in the hybridization of DE
nd Hooke–Jeeves algorithm leads to a better fitness (6.03e−06)
han DE alone (9.68).

xample 2. As shown in Fig. 4, we assume that 4 neighbors exist
or the current kth subpopulation in the migration process among
he subpopulations. The small non-negative number rp was  set
o 2e−16 for higher computation accuracy. The situation of the
eighbors receiving the information is taken into consideration.
he individual x2 has the best fitness (11.14) for the current sub-
opulation. The migration condition is that the best fitness of the
ubpopulation is smaller than the worst one of its neighbor, that is,

 (xk
best

) < f (xk+n
worst), n = 1–4.

For neighbor 1, individual x3 is the worst one. Due to its fitness
5.93 > 11.14, the migration acts on it. So, the B-learning takes effect
ecause of CV3 < CV4, that is, only its fitness is changed from 55.93
o 11.14 but the solution x3 is retained. For neighbor 2, the worst
ndividual is x1. Similarly, this neighbor undergoes the migration.
he worst solution and its fitness are replaced by the best ones
n the current subpopulation. The migration and cooperation are
ot achieved for neighbor 3 since their conditions are not satisfied.
eighbor 4 has the same situation as neighbor 1 and only the worst

tness is changed from 58.27 to 11.14.

After the migration and cooperation, it can be seen that the
orst individuals in the neighbors are improved, which provides a

etter foundation for the subsequent evolution.
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4. Numerical experiment and analysis

To demonstrate the efficiency of DMDE, we performed the fol-
lowing numerical experiments. The test problems involved are
presented below [30,32,34,35].

Sphere : f1(x) =
D∑

i=1

x2
i , |xi| < 1

Schwefel 2.22 : f2(x) =
D∑

i=1

|xi| +
D∏

i=1

|xi|, |xi| < 10

Quadric : f3(x) =
D∑

i=1

⎛
⎝ i∑

j=1

xj

⎞
⎠

2

, |xi| < 1

Noisy quartic : f4(x) =
D∑

i=1

i · x4
i + U(0, 1),  |xi| < 1.28

Ackley : f5(x) = −20 exp

⎛
⎝−0.2

√√√√ 1
D

·
D∑

i=1

x2
i

⎞
⎠

− exp

(
1
D

D∑
i=1

cos(2�  · xi)

)
+ 20 + e, |xi| < 1

Alpine : f6(x) =
D∑

i=1

|xi sin xi + 0.1xi|, |xi| < 10

Griewank : f7(x) = 1
4000

D∑
i=1

(xi)
2 −

D∏
i=1

cos
(

xi√
i

)
+ 1, |xi| < 600

Rastrigin : f8(x) =
D∑

i=1

(x2
i − 10 cos(2�xi) + 10), |xi| < 5.12

Rosenbrock : f9(x) =
D∑

i=1

100(xi+1 − x2
i )

2 + (xi − 1)2, |xi| < 2.048

Schwefel : f10(x) = 418.9829 × D −
D∑

i=1

sin(|xi|1/2), |xi| < 500

Functions f1–f3 are unimodal and function f4 is a noisy quadratic
function, where U(0,1) is a uniformly distributed random variable
in [0,1]. Function f9 is a multimodal function when D > 3. Functions
f5–f8 and f10 are multimodal functions, where the number of local
minima increases exponentially with the problem dimension. The
minimum value of all the test functions is zero. The dimension of
each test function is set as D = 50.

4.1. Parameters setting of DMDE: m and �
DMDE is implemented on the basis of DE/rand/1/bin. It will be
terminated until the number of function evaluations (NFE) reaches
1,000,000. The parameters of classic DE were set as NP = 400, F = 0.5
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Fig. 2. The pse

nd CR = 0.9 according to the suggestions given in [35]. The parame-
ers of the Hooke–Jeeves  ̨ and  ̌ were set the same as in Example 1.
he small non-negative number rp was set the same as in Example 2.
egarding each test function, 30 independent runs were performed.

DMDE has two crucial parameters m and �: m is the number
f subpopulation and � is the migration period, that is, the inter-

al between two migrations. The parameter m influences the size
f the subpopulation. The smaller m, the larger the subpopulation
ize. � dominates how often the migration occurs. The smaller � ,
he more frequent the migration. To determine the value of the
ode of DMDE.

two parameters, we  consider three candidate values for both: m = 5,
20, 50, and � = 10, 100, 500. 9 combinations can be formed for the
two parameters. Statistical results about the discovered minimum
of the objective values in 30 independent runs regarding the test
functions f5 and f8 are shown in Fig. 5.

It can be seen that the combination m = 5, � = 100 obtains signif-

icantly better results in contrast to the other 8 combinations. This
parameter setting not only produces the best average results w.r.t.
the discovered minimal objective values but also contributes to a
better distribution of the solutions.
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Fig. 3. The cooperation of L-learning and B-learning in the hybridization of DE and Hooke–Jeeves.

Fig. 4. The cooperation of L-learning and B-learning in the migration among subpopulations.

Fig. 5. The performance of DMDE with 9 combinations of the parameters m and � .
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Fig. 6. The trend of CV in the coo

.2. Analysis of DMDE

For a better understanding of the cooperation of two  learning
echanisms, Fig. 6 shows the trend of the CV and the best objec-

ive value for f8 when we applied L-learning, B-learning and the
ooperation of L-learning and B-learning, respectively.

From Fig. 6, we can see that the population diversity decreases
apidly and the population easily leads to stagnation when we
se the L-learning alone. On the contrary, although the popula-
ion diversity with the B learning increases with the evolution
nd better solutions can be obtained, the progress of evolution is
low. Nevertheless, when we combine the B-learning with the L-
earning, the population is improved gradually as it is diversified at
he early evolution stage and the solutions are renovated continu-
lly. So, it is reasonable to coordinate the L-learning and B-learning
hrough regulating the value of CV.  Meanwhile, the cooperation
trategy achieves better results than L-learning and B-learning
lone.

Fig. 7 explains the advantage of integrating the hybridization
trategy and the multi-population strategy into DE. The conver-
ence rate and the average running time (t) for 30 times of these
chemes are shown in Fig. 7. The average fitness values of all
chemes were recorded by 11 points of 30 times for f5 and f8.

As shown in Fig. 7, the performance of the proposed DMDE
utperforms the basic DE, the distributed DE, and the hybrid

ased on DE and Hooke–Jeeves in terms of the minimal fitness
alue, the convergence rate and the average time. Neverthe-
ess, the later two schemes lead to better results than the basic
E. So, it is beneficial for the proposed DMDE to integrate the

Fig. 7. The performance of DMDE co
ion of L-learning and B-learning.

distributed DE scheme and the cooperation of two  learning mech-
anisms.

Fig. 8 shows the trend of the CV,  the best and the worst fitness
values of the whole population [Fig. 8(a)] and one subpopulation
randomly chosen from 5 subpopulations [Fig. 8(b)] for f8. These
values were recorded in a quarter of migration period after every
migration.

From Fig. 8, it can be found that the values of CV increase rapidly
at the beginning of the evolution and decrease continually in the
later stages of the operation. It indicates that the DMDE  scheme
is more explorative at the beginning of the evolution and subse-
quently turns into exploitation. At the same time, the best and the
worst fitness values are improved stably along with the increase of
the number of fitness evaluation in population and subpopulations.

4.3. Comparison with other distributed DE algorithms

4.3.1. Computational complexity comparison
For IBDDE, DDE and FACPDE, their main operations include the

operations of the basic DE and the migration mechanism. And for
DMDE, its main operations include the hybrid DE and the migration
mechanism.

For one function evaluation, the time cost of the basic DE  is
caused by the time for the differential mutation tm, the time for
the crossover tc and the time for the selection ts. Each individ-

ual (solution) is D-dimensional. As a result, the time complexity
is O(D) for the differential mutation and crossover. Nevertheless,
since the improvement of an individual is not always performed,
the worst-case time complexity of the selection is O(D). For

mpared with three schemes.
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Table  2
The time complexity of the IBDDE, DDE, FACPDE and DMDE.

Main operations Time Time complexity

IBDDE DDE FACPDE DMDE

DE
Differential mutation tm O(D) O(D)
Crossover tc O(D) O(D)
Selection ts O(D) O(D)

Hybridization
Hooke–Jeeves te , tp – O(2D + 1)
CV1CV2 tCV12 – O(tCV12 )

Function evaluation tf O(tf) O(tf)
Migration mechanism

Migration tM O((gmax/�) * m2 * tM) O((gmax/�) * m2 * tM)
CV3CV4 tCV34 – O(tCV34 )

2 * tM)

I
i
o
u
e
e
c
a
i
i
u

F
p

Total  O(NFE * tf + (NFE − NP)  * D + (gmax/r) * m
gmax = (NFE − NP)/NP

BDDE, DDE and FACPDE, individuals excepting initial NP ones
nvolve the operations of DE. NFE denotes the maximal number
f function evaluations. The number of the individuals manip-
lated by DE is NFE − NP.  Since there are NP individuals in
very generation, the number of these individuals can also be
xpressed as gmax ∗ NP,  where gmax = (NFE − NP)/NP. So, the time
omplexity of the basic DE is O((NFE − NP)  * D) for IBDDE, DDE
nd FACPDE. In addition, the number of the migration is gmax/�

n the whole evolution. For each subpopulation, the migrated
ndividual and the replaced individuals of its neighbor subpop-
lations need to be chosen in the process of migration. Since

ig. 8. The trend of the CV,  the best and the worst fitness value of the whole population a
erformance of the 4th subpopulation.
O(NFE ∗ tf + ((NFE − NP)/(1 + �)) ∗ D + (((NFE − NP) ∗ �/(1 +
�)) ∗ ((2D + 1) + tCV12 )) + ((gmax/r) ∗ m2 ∗ (tM + tCV34 )))
gmax = ((NFE − NP)/(1 + �) ∗ NP)

there are m subpopulations in the whole population, the time
complexity of the migration is O((gmax/r) * m2 ∗ tM) for IBDDE,
DDE and FACPDE, where tM denotes the time for one migra-
tion. The whole time cost of the algorithm can be represented
by the sum of the time for total function evaluations and the
time for the operation corresponding to the function evaluation.
In a word, the time complexity of the IBDDE, DDE and FACPDE
is O(NFE * tf + (NFE − NP) * D + (gmax/r) * m2 ∗ tM), where tf is the time

for one function evaluation.

For DMDE, the time complexity of the differential muta-
tion, crossover and selection is also O(D) for one function

nd the subpopulation for f8. (a) The performance of the whole population. (b) The
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Fig. 9. Convergence plots.
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Table 3
The comparison of the time for function evaluation and other operations (unit: s) in
one running iteration.

Algorithm Fun. f8
t

Tm Tc Ts TM Te Tp TCV12 TCV34 Tf

DDE 1.13 1.41 0.72 0.57 1.21 1.33 0.41 0.25 12.58
IBDDE 1.75 1.42 0.71 0.35 1.17 1.75 0.42 0.27 12.31

T
C

C. Zhang et al. / Applied Soft

valuation, which is the same as those in the compared algo-
ithms. However, in DMDE, the basic DE can be integrated with
he Hooke–Jeeves algorithm when the conditions are satisfied.
ince the basic DE and the Hooke–Jeeves execute the func-
ion evaluation, the equation NP ∗ gmax + � * NP * gmax = NFE − NP,
here 0 ≤ � ≤ 1 is established, then gmax = ((NFE − NP)/(1 + �) ∗ NP)

s obtained in DMDE where NP * gmax is the number of indi-
iduals manipulated by DE; � * NP * gmax is the number
f individuals manipulated by Hooke–Jeeves. As a result,
he time complexity of the basic DE is O((NP * gmax) * D) =
((NP * (NFE − NP)/((1 + �) * NP)) * D) = O(((NFE − NP)/(1 + �)) * D) for
MDE. For one function evaluation, the time cost of Hooke–Jeeves

s caused by the time for the exploratory move te and the time for
he pattern move tp. Since the current point is perturbed in positive
nd negative directions in the exploratory move and the new point
s obtained by the pattern move [see (4)], the time complexity
s O(2D + 1) for the Hooke–Jeeves. So, O((� * NP * gmax) * (2D + 1)) =
((� * NP * (NFE − NP)/((1 + �) * NP)) * (2D  + 1)) = O(((NFE − NP) * �/

1 + �)) * (2D + 1)) is the time complexity of Hooke–Jeeves in
MDE. In addition, the time tCV12 for CV1 and CV2 is calculated

n the hybridization. In the migration, except tM, the time cost
ncludes tCV34 for CV3 and CV4. Therefore, the time complexity
f the migration is O((gmax/r) ∗ m2 ∗ (tm + tCV34 )) for DMDE. In a
ord, the time complexity of DMDE for the whole evolution is
(NFE ∗ tf + ((NFE − NP)/(1 + �)) ∗ D + (((NFE − NP)  ∗ �/(1 + �)) ∗

(2D + 1) + tCV12 )) + ((gmax/r) ∗ m2 ∗ (tM + tCV34 ))). Table 2 shows
he time complexity of IBDDE, DDE, FACPDE and DMDE.

It is notable that, compared with the time for function eval-
ation, the time for other operations take up a small proportion

n one running iteration. Table 3 shows the comparison of the
ime for function evaluation and other operations in one run-
ing iteration, where the time for all operations in one running
teration is corresponding to those in Table 2 respectively (e.g.
m → tm). Therefore, these algorithms almost have the same
ime cost in optimizing the same test function. Meanwhile,
he space complexity of DMDE is O(m × (NP/m)  × D) = O(NP × D).

able 4
omparison in terms of minimum, mean ± standard deviation and the average running ti

Fun. IBDDE DDE 

f1 2.74e+00 1.34e+01 

3.75e+00 ± 8.53e−02 2.41e+01 ± 1.04e−01 

12.35s 12.34s 

f2 1.23e+02 7.57e+01 

1.39e+02 ± 1.44e+00 5.36e+01 ± 1.20e+00 

12.78s 12.75s 

f3 4.81e+04 5.73e+03 

7.59e+04 ± 2.86e+03 2.06e+04 ± 2.11e+03 

14.25s 14.27s 

f4 5.02e+01 1.96e+01 

9.49e+01 ± 4.66e+00 4.24e+01 ± 2.92e+00 

13.89s 13.61s 

f5 2.26e+00 1.82e+00 

2.64e+00 ± 0.02e+00 2.15e+00 ± 0.04e+00 

13.47s 13.38s 

f6 6.05e+01 4.30e+01 

6.58e+01 ± 5.7e−01 5.36e+01 ± 1.20e−00 

13.38s 13.61s 

f7 9.38e−02 4.30e−02 

1.17e−01  ± 2.23e−03 7.31e−02 ± 3.36e−03 

13.74s 13.79s 

f8 5.09e+02 3.74e+02 

5.54e+02 ± 4.41e+00 4.50e+02 ± 4.99e+00 

13.31s 13.22s 

f9 2.10e+03 6.53e+02 

2.89e+03 ± 8.6e+01 1.26e+03 ± 5.97e+01 

12.52s 12.42s 

f10 1.41e+04 1.32e+04 

1.51e+04 ± 6.85e+01 1.44e+04 ± 7.63e+01 

14.02s 13.96s 
FACPDE 1.45 1.39 0.70 0.69 1.15 1.45 0.39 0.23 11.43
DMDE 1.31 1.46 0.74 0.31 1.13 1.31 0.46 0.24 11.39

From the above analysis, DMDE has no obvious difference with
the other three algorithms in terms of computational complex-
ity.

4.3.2. Results and performance comparison
To prove the viability of the DMDE and test its performance, the

DMDE was compared with IBDDE [13], DDE [14] and FACPDE [16].
For a fair comparison, the termination criteria, the applied basic DE
variant and its three control parameters for the three algorithms
were all set as same as the DMDE mentioned above. 30 independent
runs were performed for each algorithm. The other parameters of
the three algorithms were set as follows.

IBDDE was  run with a population of 400 individuals, which is
divided into 5 subpopulations of 80 individuals each. The other
parameters were chosen according to the values in Apolloni et al.
[13], and the subpopulations exchange one individual every 100
generations. The individual to be migrated is randomly chosen from
the current subpopulation. Incoming individuals from other sub-
populations replace a randomly chosen local individual, only if the

former is better. A unidirectional ring topology was employed.

In DDE, the population holds 400 individuals, which is
divided into 16 subpopulations of 25 individuals. Following the
suggestions in Falco et al. [14], a torus mesh topology was

me (s).

FACPDE DMDE

2.04e+00 4.93e−25
2.69e+00 ± 7.45e−02 1.00e−23 ± 2.00e−24
12.13s 12.03s
8.82e+01 8.04e−11
9.23e+03 ± 3.49e+03 4.58e−10 ± 9.10e−11
12.62s 12.64s
9.67e+03 1.45e−35
3.48e+04 ± 1.95e+03 2.38e−35 ± 1.54e−33
14.26s 14.26s
3.79e+01 1.77e−02
5.59e+01 ± 2.28e+00 2.95e−02 ± 1.75e−03
13.55s 13.60s
1.82e+00 6.55e−13
2.31e+00 ± 0.03e+00 1.56e−12 ± 1.34e−13
13.36s 13.30s
4.56e+01 2.97e−21
5.26e+01 ± 6.34e−01 3.86e−15 ± 8.11e−15
13.35s 13.40s
6.14e−02 0
9.07e−02 ± 2.67e−03 8.21e−04 ± 4.71e−04
13.60s 13.65s
4.24e+02 2.74e+02
5.04e+02 ± 4.97e+00 3.41e+02 ± 3.93e+00
13.15s 13.17s
1.32e+03 2.84e+02
1.90e+03 ± 5.19e+01 3.47e+02 ± 3.51e+00
12.30s 12.28s
1.41e+04 8.70e+03
1.50e+04 ± 6.70e+01 1.04e+04 ± 1.35e+02
13.60s 13.55s
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mployed. Each subpopulation sends a copy of its best individual
o replace the worst ones of its neighbors every 5 genera-
ions.

FACPDE was run with a population of 400 individuals, which is
ivided into 5 subpopulations of 80 individuals. According to the
uggestions in [16], the migration occurs if rand < 0.2 every gener-
tion. The individual with the best fitness is duplicated and then
eplaces a randomly selected individual of the neighbor in a unidi-
ectional ring.

Similar to IBDDE and FACPDE, DMDE was run with a popula-
ion of 400 individuals, which is divided into 5 subpopulations of
0 individuals each. The migration period was set to � = 100. The
est individual in each subpopulation is duplicated and replaces
he worst one of its neighbors in the von Neumann topology (see
igs. 1 and 4).

Table 4 shows the results obtained by IBDDE, DDE, FACPDE
nd the proposed DMDE to solve 50-dimensional problems f1–f10.
egarding each test problem, each algorithm ran independently
0 times. The minimum, the mean plus standard deviation of the
bjective values found and the average running time for 30 runs
re listed in Table 4. The best results are highlighted in boldface.

Results in Table 4 show that DMDE has a very good perfor-
ance for the test problems f1–f7, since it can find those solutions
ith the best minimum, average and standard deviation values

nd outperform the other three algorithms with a large margin.
MDE provides the best minimal and average values among the
lgorithms for f10. As for f8 and f9, DMDE achieves the best mini-
um,  average and standard deviation. For one running iteration,

n average, DMDE takes up the least amount of time for f1, f5, f9
nd f10 and approximate time for other functions compared with
he other three algorithms. In this sense, DMDE is a very efficient
lgorithm for various test problems.

Fig. 9 shows the average convergence trends of the compared
lgorithms. All algorithms were run 30 times, and 11 points were
ecorded every time. For every point, the results were obtained by
veraging the fitness value of 30 times.

Fig. 9 shows the results of the average performance trends. The
MDE algorithm is obviously superior to IBDDE, DDE and FACPDE.
he DMDE has good convergence speed during the early stages of
he evolution for f4 and f10, and it detects high quality solutions dur-
ng the initial generations. The performance gap between DMDE
nd the second best algorithm is much larger for f1, f3, f5 and f6.
esides, regarding f3, f5 and f6, DMDE has a great ability to evolve
he discovered objective value even if the number of function eval-
ations reaches 106. Although DMDE converges slower than DDE
nd FACPDE for f2 and slower than FACPDE for f9, it continuously
mproves on its solutions and outperforms the other algorithms at
he end of evolution.

The comparison shows that the proposed DMDE is capable of
ackling both unimodal and multimodal problems. The DMDE is
ery efficient and has obvious advantages over the three state-of-
he-art distributed DE algorithms.

. Conclusion

A novel distributed memetic differential evolution incorporat-
ng two learning mechanisms, namely DMDE, was presented in this
aper. The proposed method is inspired by two strategies: the pop-
lation structure often used in distributed DEs and the hybridiza-
ion strategy often adapted in MAs. The former strategy divides
he initial population into multiple subpopulations according to
he von Neumann topology and realizes the periodical information

xchange by migration. And the latter idea takes DE as an evolu-
ionary frame that is assisted by Hooke–Jeeves algorithm to balance
xploration and exploitation. In the evolution process, the charac-
eristics of the Lamarckian learning and Baldwinian learning are

[

uting 13 (2013) 2947–2959

analyzed and the two  learning mechanisms are coordinated accord-
ing to the coefficient of variance. The cooperation strategy was
applied in the process of information migration among subpop-
ulations as well as the hybridization between Hooke–Jeeves and
DE. Experimental results demonstrate that the cooperation strat-
egy is effective and can achieve good performance. The DMDE was
compared with three distributed DE algorithms recently proposed
in literature. Numerical results show that DMDE has an excellent
performance in terms of solution quality and convergence speed
for all problems considered than other distributed DE algorithms.
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