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As a population-based optimizer, the differential evolution (DE) algorithm has a very good reputation for
its competence in global search and numerical robustness. In view of the fact that each member of the pop-
ulation is evaluated individually, DE can be easily parallelized in a distributed way. This paper proposes
a novel distributed memetic differential evolution algorithm which integrates Lamarckian learning and
Baldwinian learning. In the proposed algorithm, the whole population is divided into several subpopula-
tions according to the von Neumann topology. In order to achieve a better tradeoff between exploration
and exploitation, the differential evolution as an evolutionary frame is assisted by the Hooke-Jeeves algo-
rithm which has powerful local search ability. We incorporate the Lamarckian learning and Baldwinian
learning by analyzing their characteristics in the process of migration among subpopulations as well as in
the hybridization of DE and Hooke-Jeeves local search. The proposed algorithm was run on a set of clas-
sic benchmark functions and compared with several state-of-the-art distributed DE schemes. Numerical
results show that the proposed algorithm has excellent performance in terms of solution quality and
convergence speed for all test problems given in this study.
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1. Introduction

The differential evolution (DE) is a stochastic, population-based
global search and optimization method [1]. It uses the difference of
solutions to create new candidate solutions and one-to-one spawn-
ing competition scheme to select new individuals greedily. These
attractive characteristics make DE retain the knowledge of good
solutions in the current population. DE, just like the particle swarm
optimization (PSO) and genetic algorithm (GA) which have been
implemented to various domains [2,3], has been proven to have a
good performance on many real-world problems [4]. DE is good at
exploring the search space and locating the region of global optima,
but it is slow at fine-tuning the solution [5]. Some modifications on
the basic DE can improve its performance, which can be grouped
into two categories. One depends on the modifications of DE itself
including its parameters, operator, and population structure [6,7];
and the other focuses on hybridizing DE with different optimiz-
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ers such as additional local searchers and other population-based
metaheuristics (e.g. particle swarm optimizer) [8-10].

In the case of modifying the population structure of DE, a popular
way is dividing the whole population into multiple subpopulations
which evolve independently and exchange information mutually.
An important motivation behind the multiple-population strat-
egy is to maintain population diversity and achieve the parallel
search of the solution space. DE can be easily parallelized due to
the fact that each member of the population is evaluated individ-
ually. Tasoulis et al. [11] explored how differential evolution can
be parallelized by using a unidirectional ring topology and pro-
posed an algorithm, namely parallel differential evolution (PDE),
to improve both the speed and the performance of the method.
Besides, a lot of research investigated the migration policy of par-
allel differential evolution, including migration schemes, migration
frequencies, the number and size of subpopulations, and so on.
Specially, for solving the learning issue in fuzzy neural inference
system, Singh et al. [12] studied the parameterization of a parallel
distributed DE in detail and discussed the influence of different
interval and sizes of migration, as well as different number of
islands. Apolloni et al. [13] designed a modified version of the
PDE in a generic way, namely island based distributed differen-
tial evolution (IBDDE). A set of five parameters was integrated to
elaborate on the main principles of the migration. A distributed
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version of the differential evolution (DDE) was coupled with affine
transformation and mutual information maximization to perform
the registration of remotely sensed images in [14]. This algorithm
differs from PDE and IBDDE by the topology it adopts. Instead
of a unidirectional ring, DDE uses a locally connected topology
named torus topology. Based on comparative experiments, Falco
et al. indicated that DDE is very promising to achieve better per-
formance. Additionally, Izzo et al. [15] presented a heterogeneous
asynchronous island model for DE. The results confirmed that
such a model could improve the reliability and speed of the algo-
rithm and find significantly better solutions. Recently, Matthieu
et al. [16] designed an adaptive mechanism for the scale factor in
distributed differential evolution schemes, called “F” adaptive con-
trol parallel differential evolution (FACPDE). The empirical results
in [14] showed that the employment of multiple scale factors
can greatly improve the performance of the distributed algo-
rithm.

In the context of search and optimization, it is worth noting
that the key design issue of evolutionary algorithms lies in the suc-
cessful promotion of tradeoff between exploration and exploitation
[17]. Krasnogor and Smith [18] pointed out that the population-
based intelligent methods combining local search methods, called
memetic algorithms (MAs) which were originally proposed by
Moscato and Norman for the traveling salesman problem [19],
can lead to a better tradeoff between exploration and exploitation
and thereby improved performance. Now, the term MA is widely
employed as a synergy of evolutionary or any population-based
approach with separate individual learning or local improvement
procedures for problem solving [20]. There are two mechanisms on
how learning influences evolution. One is the Lamarckian learning
(L-learning) in which the characteristics of phenotype and geno-
type acquired by an organism during its lifetime is transferred and
can be passed on to the organism’s offspring directly. Another is
the Baldwinian learning (B-learning), different from the L-learning
that the acquired genotype traits are not inherited to its offspring
directly, but adaptive learning can guide the course of evolution
indirectly in a way that learning alters the shape of search space
and thereby provides good evolutionary paths towards individu-
als. The experimental results of [20] show that the L-learning in
general has a higher performance than the B-learning, and most
MAs employ the L-learning mechanism to achieve the combina-
tion of global search and local search. At the same time, Nguyen
et al. [20] also pointed out that the L-learning cannot distinguish
individuals effectively, easily leading to stagnation. Though com-
paratively time-consuming, it is easier to obtain global optima by
the B-learning.

In view of above, this paper proposes a novel distributed
memetic differential evolution (abbr., DMDE) which integrates the
L-learning and the B-learning. In the proposed algorithm, the initial
population is distributed over multiple subpopulations accord-
ing to the von Neumann topology. All subpopulations interact
by migrating their respective best individual to neighboring sub-
populations and replacing the worst ones partly or entirely. In
the evolutionary loop, DE is in charge of global search and the
Hook-Jeeves algorithm assists DE to achieve local improvement.
In order to balance exploration and exploitation, we incorporate
the L-learning and the B-learning by analyzing their characteris-
tics of individual learning. Then we achieve the cooperation in two
aspects: one is the migration among subpopulations and the other
is the hybridization of DE and the Hook-Jeeves algorithm.

The presented algorithm was run on a set of benchmark
problems and compared with several distributed DE schemes.
Numerical results show that the proposed DMDE makes a good
tradeoff between exploration and exploitation and performs better
than three state-of-the-art distributed DE algorithms for tackling
both unimodal and multimodal problems.

The remainder of this paper is organized as follows. In Section
2, a basic DE algorithm is briefly introduced. Section 3 proposes the
new distributed DE—DMDE. Section 4 analyses the computational
complexity of the proposed scheme and presents the experimental
results on benchmark functions. This section gives computational
complexity and performance comparisons with several state-of-
the-art distributed DE schemes as well as a discussion of the
obtained results. Conclusion is summarized in Section 5.

2. Basic differential evolution

Differential evolution (DE) is a population-based metaheuristic.
DE/rand/1/bin is one of the classic and most successful DE variants
[21]. It generates new solution vectors by adding the weighted dif-
ference of two randomly selected population members to the third
member, and forms the final trial vector with binomial crossover.
In addition, DE employs a one-to-one spawning logic which allows
replacement of an individual only if the offspring has better fitness
value than its corresponding parent.

DE evolves NP D-dimensional individual vectors X;g,i=1, 2, ...,
NP, where g denotes the current generation, and NP is the popula-
tion size. The initial population is randomly generated within the
whole search space. After initialization, DE performs in sequence
three vector operations: differential mutation, crossover and selec-
tion.

A number of variations to the classic DE have been developed.
Different DE strategies differ in the way that the base vector is
selected, the number of difference vectors used, and the way that
crossover points are determined. In order to characterize these
variations, a general notation is adopted, namely DE/x/y/z [21]. X
represents a string denoting the vector to be perturbed, y is the
number of difference vectors considered for perturbation of x, and
z is the type of crossover being used. A brief introduction on the
well-known DE variant DE/rand/1/bin is given in the following.

2.1. Differential mutation

For each target vector X;g, {i=1, 2, ..., NP}, the corresponding
mutant vector v is generated as follows:

V=X0g+F (X1, —Xr2¢), To.T1,T2€(1,2,...,NP}. (1)
where X,o ¢ isabase vector and the indexes satisfyrg # r1 # rp # i.
It is obvious that at least four individuals are needed to implement
the above mutation operation, implying that NP> 4. The scaling
factor F lies within the range (0, 2), usually less than 1 [22].

2.2. Crossover
After mutation, the target vector (individual) is mixed with the

mutant vector, and the following crossover operation is used to
form the final trial vector:

Vigi
Uigj= {x,’g’],’
1,8.]°

ifrand(0, 1) < CRorj = jrgng
otherwise

; (2)

wherei=1,2,...,NPandj=1,2,...,D.CRe(0, 1) is the crossover
rate that controls the probability of creating components for the
trial vector u from the mutant vector v. The index j,q,4 is an integer
randomly chosen from the set {1, 2, ..., NP}, ensuring that at least
one component of the trial vector is provided by the mutated vector.
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Fig. 1. von Neumann topology.

2.3. Selection

The solution surviving to the next generation is selected from
the target individual and its corresponding trial vector according
to the following rule:

U g iff(“ig) ff(xig)
X; = ’ 8! ’ 3
hg+1 { Xig otherwise ’ 3
where f{-) is the objective function to be minimized. In fact, the
selection scheme is a one-to-one tournament replacement. The DE

trial vector is not compared against all individuals, but only against
its counterpart in the current generation.

3. A novel distributed memetic differential evolution:
DMDE

3.1. Migration mechanism in distributed DE

In the new distributed differential evolution, the initial pop-
ulation P is divided into m subpopulations and the size of each
subpopulation is NP;=NP/m (i=1, 2, ..., m). These subpopulations
are arranged by the von Neumann topology [23]. Only those indi-
viduals that are close to each other within the topology are allowed
to interact during the evolution. In the von Neumann topology
structure, subpopulations are denoted as nodes. Each node has four
neighbors (see Fig. 1). The current node is displayed in black, and
its neighboring nodes are indicated in grey. The node under exam-
ination is isolated from all the other white ones. Each node only
exchanges information with its neighbors and has no direct effect
on other nodes. However, each node provides and receives infor-
mation within its neighborhood at the same time, thus making
information communicated throughout the topology.

The individuals of the ith subpopulation (P;(i=1, 2, ..., m)) in
each node use the DE algorithm as the main frame to evolve and
participate in the competition to select the best individuals. Every
y generations, the best individual in each node will replace the
worst individual of its neighbor nodes. The migration mechanism
among nodes enables the information to be communicated in the
whole population, which is beneficial to explore the solution space
and find better solutions. Since the replacement will generate the
same solutions in subpopulations and lower the diversity of the
whole population, the search process may stagnate in certain cases.
Ishibuchi and Narukawa [24] proposed a multi-island model using
either the L-learning or the B-learning for multiobjective knapsack
problems. The 30% islands implement the L-learning in a model

with tenislands and the rest perform the B-learning. Inspired by the
idea of [24], in the information migration process, we integrate the
L-learning and B-learning, and achieve their cooperation by ana-
lyzing the traits of the two learning mechanisms as described in
Section 3.3.

3.2. Memetic DE

Differential evolution (DE) is a reliable and versatile function
optimizer. It generates an offspring until an individual with bet-
ter performance is generated. However, DE can be subjected to
stagnation in cases where no offspring individuals outperform the
corresponding parents for a large number of generations. In order to
prevent stagnation, and more generally, to reach high performance
within the DE framework, the DE can be enhanced by means of a
proper hybridization with some local search algorithms.

The local search process is achieved by the Hooke-]eeves algo-
rithm [25] which is simple and efficient. In the Hooke-Jeeves
algorithm, a combination of exploratory move and pattern move
is made iteratively to search the optimum solution [26]. In the
exploratory move, the current point x; is perturbed in positive
and negative directions with a scalar predefined step size « along
every one of the d dimensional axes at a time, and the best point
X, is recorded. The current point x; is changed to the best point x;
at the end of each perturbation if f{x,)<f(x1) (for minimization);
otherwise, the step size « is reduced to continue the process. The
exploratory move terminates until all dimensions are exhausted,
and the best points are used to perform the pattern move.

The pattern move acts as follows: after the kth exploratory
move, Xy, is obtained as the current base point. Repeat the suc-
cessful moves in a combined pattern move, that is:

X =Xpy1 + B(Xep1 —Xk),  B>0. (4)

If the new point X has better fitness, take it as the new base point.

In DE, the greedy competition selection scheme can lead to
stagnation. In view of this, we combine the Hooke-Jeeves local
search with the selection scheme of DE. For each individual, when
f(Xcrossover) > f(X) (Xcrossover denotes the solution after the crossover
in DE), we employ a probability value p =g/gmax to judge whether
the Hooke-Jeeves algorithm is used to update DE, where g is the
current generation and gmax is the allowable maximum genera-
tion. The Hooke-Jeeves algorithm is applied if and only if rand(0,
1)<p; otherwise, no update occurs. So, in the early stage of the
memetic DE algorithm, in order to keep population diversity, the
Hooke-]Jeeves algorithm is rarely used and DE is the main evolution
method. In the later evolution stage, the Hooke-]Jeeves algorithm
has larger opportunity to be applied for enhancing the local search
ability and improve the precision of solutions.

3.3. Cooperation of Lamarckian learning and Baldwinian learning

There are two learning mechanisms to combine evolutionary
search and local search heuristics. One of the mechanisms is the
L-learning. In this mechanism the solutions generated during the
course of evolution are fine-tuned. After individual improvement,
the solution itself and its associated fitness value are modified.
The modified solution is then inserted back into the population
for subsequent evolutionary processing. The other mechanism is
the B-learning. It is similar to the L-learning in that the evolution-
ary search is interleaved with local search and the solutions’ fitness
values are modified by local search. However, instead of inserting
the solution obtained by local improvement into the population, the
original solution before the application of local search is retained
for subsequent evolutionary processing [27]. The results obtained
in [28] show that, even if a solution has an undesirable inborn fit-
ness, it may still have a high chance to find the global optimum,
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Table 1

The dynamics of CV with the solution and fitness.
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2 2
Schwefel 2.22: fo(x) = E x| + H‘Xi‘y x| < 10
i-1 i-1

X X2 X3 X4 fx1) fixa) flxs) fX4) v

g=0 (9.00,7.82) (-5.37,5.24) (2.13,-0.87) (~0.28, -9.62) 87.28 38.81 4.86 12.61 1.03
g=10

L (~1.03,0.06) (~1.09, —0.02) (~1.02, 0.066) (-1.07, -0.01) 1.16 1.13 1.15 1.11 0.01

B (9.00,7.82) (-5.37,5.24) (2.13,-0.87) (~0.28, -9.62) 9.67 36.14 4.86 12.55 0.88
g=100

L (~1.06, —0.00) (~1.06, —0.00) (~1.06, —0.00) (~1.06, —0.00) 1.06 1.06 1.06 1.06 0

B (9.00,7.82) (-5.37,5.24) (2.13,-0.87) (~0.28, -9.62) 9.67 24.91 2.24 0.81 1.17

2 2
Griewank: f,(x) = gy > ()~ | [ eos (7) +1, x| <600
1
i=1 i=1
X X2 X3 X4 fx1) fx2) flxs) fx4) cv

g=0 (540.15, 469.55) (-322.63,314.51) (128.21, -52.23) (-16.82, —577.79) 128.51 51.29 6.39 84.96 0.76
g=10

L (19.00, 52.25) (8.56,29.73) (15.82, 50.62) (2.49, —34.94) 0.56 0.76 0.35 0.60 0.28

B (540.15, 469.55) (-322.63,314.51) (128.21, -52.23) (-16.82, —577.79) 40.38 51.29 6.39 28.17 0.61
£=100

L (18.68,17.95) (18.69, 17.95) (21.89,13.55) (21.89, 13.55) 0.18 0.18 0.18 0.18 0.01

B (540.15, 469.55) (-322.63,314.51) (128.21, -52.23) (-16.82, —577.79) 40.36 35.30 0.09 147 1.11

while the Lamarckian strategy, though faster, may lead to a local
optimum.

These characteristics of the L-learning and the B-learning
prompt us to investigate the efficiency of the cooperation of these
two learning mechanisms. To realize this cooperation, we employ
the coefficient of variance (CV) [29], a statistical measure of the
dispersion of data points in a data series. It is calculated as follows:

_ o
Tty

cv (5)

where o and u represent the standard deviation and mean of a
group data, respectively and rp is a small non-negative number to
ensure that CV has a meaningful denominator when p =0. The coef-
ficient of variation represents the ratio of the standard deviation to
the mean, and it is a useful statistic for comparing the degree of
variation from one data series to another, even if the means are
drastically different from each other. The higher the CV, the greater
the dispersion in the variable. The lower the CV, the smaller the
residuals relative to the predicted value.

In order to illustrate the dynamics of CV, Table 1 shows the
change of CV with the solution and fitness for the 2-dimensional
Schwefel 2.22 function and Griewank function.

The former function is unimodal and the later is multimodal
[30]. DE/rand/1bin is employed as the evolution frame. The param-
eters F and CR are set as 0.5 and 0.9 respectively according to the
literature [31]. Besides, we choose NP=4 for ease of comprehen-
sion. The best fitness values of the L-learning and B-learning in the
given generation are highlighted in boldface.

The L-learning and B-learning (L and B in Table 1) operate on
the initial individuals respectively. From the values of the individ-
uals x;(i=1-4), their fitness f{x;) and the CV after L-learning and
B-learning, some conclusions can be achieved as follows:

e The CV values after L-learning are smaller than the ones after
B-learning, e.g. 0.01<0.88 and 0<0.17 for f,; 0.28<0.61 and
0.01<0.11 for f;.

e At the earlier stage of DE, e.g. when g =10, the L-learning can gain
better fitness results than B-learning, e.g. 1.13<4.86 for f, and
0.35<6.39 for f;.

¢ At the later stage of DE, e.g. when g=100, the B-learning can gain
better fitness results than L-learning, e.g. 0.81<1.06 for f, and
0.09<0.18 for f7.

The conclusions acquired from Table 1 above are in accordance
with the onesin[28].So, CVcanbe used as adiversity index to reflect
the influence of L-learning and B-learning on the individuals.

In our method, the cooperation scheme is applied in the
hybridization of DE and the Hooke-Jeeves algorithm as well as the
migration among subpopulations. In the process of the hybridiza-
tion between DE and Hooke-Jeeves, we calculate the CV of the
fitness before and after the hybridization, respectively. Denote the
former by CV; and the later by CV;. If CVq <CV,, the population
updated by the hybridization of DE and the Hooke-Jeeves algorithm
has the greater dispersion. On the occasion, more undesirable indi-
viduals are likely to slow down the evolution. So, the L-learning is
expected to find efficient solutions faster in favor of exploitation.
If CV; > CV,, the population after the hybridization has smaller or
identical dispersion. In this situation, it is potential to find better
solutions but stagnate around local optima. So, the B-learning is
required to keep the diversity of population to benefit exploration.
Regarding the information migration in distributed DE, each sub-
population exchanges information with its neighbors only if the
new immigrant has a better performance than the worst one in the
target subpopulation, i.e.f(x’l;est) < f(x"fv*;'r‘st), n=1-4. The coopera-
tion of the L-learning and the B-learning is also considered in the
migration process which can be regarded as a way of social learn-
ing at subpopulation level. Denote the CV of the fitness before the
migration by CV3 and that after the migration by CV4, respectively.
The cooperation policy is akin to that employed in the process of the
hybridization between DE and Hooke-Jeeves. If CV3 < CVy4, the sub-
population that has exchanged the information with its neighbors
obtains greater dispersion. It is difficult to find competitive solu-
tions in short time and the whole population will evolve slowly.
Thereby, the L-learning is executed to replace the worst individu-
als in each subpopulation with the best ones in its neighbors. In this
situation, the subpopulation not only retains its best individual but
also absorbs the best individuals of its neighbors. It is beneficial to
accelerate the evolution and enhance the exploitation. If CV3 > CVy,
the subpopulation through the information migration has smaller
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or identical dispersion and the whole population contains more
similar or identical individuals, which is disadvantageous to the
exploration of the solution space. Under this circumstance, the B-
learning takes effect, that is, only the fitness values of the worst
individuals in each subpopulation are replaced in the migration.
Due to the fitness sharing through migration, the worst individuals
in each subpopulation before migration may not be the worst ones
in subsequent generations. In this way, the fast convergence toward
the so-far-best solutions is moderated, which helps to maintain
population diversity and explore more superior solutions in the
succeeding evolution.

For the sake of clarity, the pseudo-code illustrating the principle
of DMDE is shown in Fig. 2.

The following two examples are given to elaborate on the coop-
eration of L-learning and B-learning in the hybridization of DE and
Hooke-]Jeeves algorithm as well as the migration among subpop-
ulations respectively. The 2-dimensional Schwefel 2.22 function is
applied and 4 individuals are acquired randomly for conciseness.

Example 1. Referring to Fig. 3, the hybridization acts on
every individual sequentially in accordance with the conditions
f(Xcrossover) > f(x)and rand(0, 1) <p shown in Section 3.2. The three
parameters of DE were set as the ones corresponding to Table 1. The
step size  was set to be 0.25 x b (b: the variable value of the current
dimension for the base point x) and the coefficient 8 was set to be
1 in Hooke-]Jeeves algorithm (H-] in Fig. 3) in accordance with the
suggestions given in [33].

For x; and X4, the hybridization conditions are not satisfied
and they retain the results of DE. The hybridization conditions are
achieved for x; and x3. So the B-learning is adopted for x, due
to CVy>CV, and the L-learning is considered for x3 because of
CVq <CV5,. From the results in Example 1, it can be seen that the
cooperation of L-learning and B-learning in the hybridization of DE
and Hooke-Jeeves algorithm leads to a better fitness (6.03e—06)
than DE alone (9.68).

Example 2. As shown in Fig. 4, we assume that 4 neighbors exist
for the current kth subpopulation in the migration process among
the subpopulations. The small non-negative number r, was set
to 2e—16 for higher computation accuracy. The situation of the
neighbors receiving the information is taken into consideration.
The individual x; has the best fitness (11.14) for the current sub-
population. The migration condition is that the best fitness of the
subpopulation is smaller than the worst one of its neighbor, that is,
SO ) < FOXERT), n=1-4.

For neighbor 1, individual x3 is the worst one. Due to its fitness
55.93 > 11.14, the migration acts onit. So, the B-learning takes effect
because of CV3 <(CVy, that is, only its fitness is changed from 55.93
to 11.14 but the solution x5 is retained. For neighbor 2, the worst
individual is x;. Similarly, this neighbor undergoes the migration.
The worst solution and its fitness are replaced by the best ones
in the current subpopulation. The migration and cooperation are
not achieved for neighbor 3 since their conditions are not satisfied.
Neighbor 4 has the same situation as neighbor 1 and only the worst
fitness is changed from 58.27 to 11.14.

After the migration and cooperation, it can be seen that the
worst individuals in the neighbors are improved, which provides a
better foundation for the subsequent evolution.

4. Numerical experiment and analysis

To demonstrate the efficiency of DMDE, we performed the fol-
lowing numerical experiments. The test problems involved are
presented below [30,32,34,35].

D
A= X2 <1

i=1

Sphere :

D D

A=Y i+ [[xt i <10

i=1 i=1

Schwefel 2.22 :

Quadric :

D
fO=>"

D
fa(x) = Zi K 4+U0,1), x| <1.28

i=1

Noisy quartic :

Ackley :  f5(x) = —20exp | —0.2
1 D
—exp <DZCOS(27( xi)> +20+e, |x] <1
i=1
D
Alpine : = lei sinx; + 0.1x;], x| < 10

i=1
D
Xi )
Griewank : f7(x) 40002 Hcos <z> +1, x| <600
i=1 i=1

D
Rastrigin :  fg(x Z x — 10 cos(2mx;) + 10),
i=1

|xj] <5.12

Rosenbrock : fo(x |x;| < 2.048

Z1OO(X1+1 —x2Y (17,

i=1

D
fio(x) = 418.9829 x D — Zsin(m\]/z), Ix;| < 500
i=1

Schwefel :

Functions f; —f3 are unimodal and function f4 is a noisy quadratic
function, where U(0,1) is a uniformly distributed random variable
in [0,1]. Function fy is a multimodal function when D > 3. Functions
fs—fg and f1o are multimodal functions, where the number of local
minima increases exponentially with the problem dimension. The
minimum value of all the test functions is zero. The dimension of
each test function is set as D=50.

4.1. Parameters setting of DMDE: m and y
DMDE is implemented on the basis of DE/rand/1/bin. It will be

terminated until the number of function evaluations (NFE) reaches
1,000,000. The parameters of classic DE were set as NP=400, F=0.5
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initialize population
for individual i=1: NP
compute the objective value f{x)

end
while the stopping condition is not met do
for generation g=l:g

for subpopulation £ =1:m
for individual ;=1: NP/m

differential mutation —>

crossover —> u,

if f(xsrossuver ) > f(x)
if rand0]) < g/ g,

Hooke-Jeeves — X

compute CV) and CV,

vT,S‘

Cooperation of L-learning and
B-Learning in the hybridization
of DE and the Hooke—Jeeves
algorithm

il,g

if CV, <CV,

else

end if

Xie = Xig ;f(xi,g) = f(xfl,g) L learning

X, = xj,g;f(xi.’g) = f(xflyg) B learning

end if
end if
end for
end for

for k=1:m
forn=1:4

if f(Xpe) < f(x

if g is aninteger multiple of ¥ (learning period)

k+n
worst

select and copy xfes,
compute CV; and CV,

Cooperation of L-learning and
B-Learning in the migration
amone subvonulations.

if CV, <CV,

k+n  _ k. k+n N _ k -
Xworsr - xbesf 3 f(x\:‘arsr) = f(xbgsr) L leal nng

else
k+n k+n | k+n N _ k .
worst xworsr 4 f(xwom:) e f(xbesr) B leammg

end if

end if
end for
end for
end if
end for
end while

Fig. 2. The pseudo-code of DMDE.

and CR=0.9 according to the suggestions given in [35]. The parame-
ters of the Hooke-Jeeves o and 8 were set the same as in Example 1.
The small non-negative number r, was set the same as in Example 2.
Regarding each test function, 30 independent runs were performed.

DMDE has two crucial parameters m and y: m is the number
of subpopulation and y is the migration period, that is, the inter-
val between two migrations. The parameter m influences the size
of the subpopulation. The smaller m, the larger the subpopulation
size. y dominates how often the migration occurs. The smaller y,
the more frequent the migration. To determine the value of the

two parameters, we consider three candidate values for both: m=5,
20, 50, and y =10, 100, 500. 9 combinations can be formed for the
two parameters. Statistical results about the discovered minimum
of the objective values in 30 independent runs regarding the test
functions f5 and fg are shown in Fig. 5.

It can be seen that the combination m =5, y =100 obtains signif-
icantly better results in contrast to the other 8 combinations. This
parameter setting not only produces the best average results w.r.t.
the discovered minimal objective values but also contributes to a
better distribution of the solutions.
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Fig. 3. The cooperation of L-learning and B-learning in the hybridization of DE and Hooke-Jeeves.

Current Subpopulation

x1=(6.42,

xi=(-1.11

8.44) fi=69.09

A4.76).fi=11.14

x1=(2.31,-6.47),=23.73
xi~(5.84,-1.89) fi=18.74

Nei*ghbor 1
x1=(-3.91,-3.94),/i=23.27
x=(-6.21,-0.83),i=12.21
x3=(-6.13,-6.98),/5=55.93
X4=(3.64,3.96),£;=22.03

Neightor 2
x1=(6.36,-3.18),/i=29.73
x2=(3.20,0.68),/2=6.07
x3=(-3.16,4.54),/5=22.06
x+=(-4.21,-3.81),/:=24.06

Neighbcg' 3
x1=(2.20,0.65),/i=4.29
x2=(-1.03,4.08),/:=9.33
x35=(0.55,-0.35),+=1.09
x4=(-0.28,-3.83),£i=5.19

Neight)or 4
x1=(-9.61,0.06),/i=10.20
x2=(3.63,4.19),/2=23.00
x3=(-2.41,-1.42),/5=7.26
x+=(6.76,6.63),i=58.27
Cr3=0.94

X=(-1.11,4.76) fi=11.14

c V|3=0.67 Cr3=0.49 CV=0.68
L
x=(-1.11,4.76) fi=11.14 | [ xi=(-1.11,4.76),/i=11.14
Cr4=0.37 CV4|=0.54 11. 14>9. 33
CV3>CV4 B-leaming CV3<CV4 L-learning

x]=(-3.91,3.94),ﬁ=23_27
x1=(-6.21,-0.83),=12.21
x=(-6.13,-6.98),/i=11.14
xi=(3.64,3.96),fi=22.03

X1=(-1.11,4+76),ﬁ=11.14
x:=(3.20,0.68),=6.07
x3=(-3.16,4.54),£5=22.06
xi=(-4.21,-3.81) i=24.06

X1=(2.20,0.65) fi=4.29
x1=(-1.03,4.08),£:=9.33
x3=(0.55,-0.35),5=1.09
x¢=(-0.28,-3.83)£i=5.19

CV4|=0.53
CV3>CV4 B-learning

x1=(—9.61,0*.06),ﬁ=10.20
x=(3.63,4.19),4=23.00
x=(-2.41,-1.42) +=7.26
xé=(6.76,6.63),fi=11.14

Fig. 4. The cooperation of L-learning and B-learning in the migration among subpopulations.
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Fig. 6. The trend of CV in the cooperation of L-learning and B-learning.

4.2. Analysis of DMDE

For a better understanding of the cooperation of two learning
mechanisms, Fig. 6 shows the trend of the CV and the best objec-
tive value for fg when we applied L-learning, B-learning and the
cooperation of L-learning and B-learning, respectively.

From Fig. 6, we can see that the population diversity decreases
rapidly and the population easily leads to stagnation when we
use the L-learning alone. On the contrary, although the popula-
tion diversity with the B learning increases with the evolution
and better solutions can be obtained, the progress of evolution is
slow. Nevertheless, when we combine the B-learning with the L-
learning, the population is improved gradually as it is diversified at
the early evolution stage and the solutions are renovated continu-
ally. So, it is reasonable to coordinate the L-learning and B-learning
through regulating the value of CV. Meanwhile, the cooperation
strategy achieves better results than L-learning and B-learning
alone.

Fig. 7 explains the advantage of integrating the hybridization
strategy and the multi-population strategy into DE. The conver-
gence rate and the average running time (t) for 30 times of these
schemes are shown in Fig. 7. The average fitness values of all
schemes were recorded by 11 points of 30 times for f5 and fg.

As shown in Fig. 7, the performance of the proposed DMDE
outperforms the basic DE, the distributed DE, and the hybrid
based on DE and Hooke-Jeeves in terms of the minimal fitness
value, the convergence rate and the average time. Neverthe-
less, the later two schemes lead to better results than the basic
DE. So, it is beneficial for the proposed DMDE to integrate the
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distributed DE scheme and the cooperation of two learning mech-
anisms.

Fig. 8 shows the trend of the CV, the best and the worst fitness
values of the whole population [Fig. 8(a)] and one subpopulation
randomly chosen from 5 subpopulations [Fig. 8(b)] for fg. These
values were recorded in a quarter of migration period after every
migration.

From Fig. 8, it can be found that the values of CV increase rapidly
at the beginning of the evolution and decrease continually in the
later stages of the operation. It indicates that the DMDE scheme
is more explorative at the beginning of the evolution and subse-
quently turns into exploitation. At the same time, the best and the
worst fitness values are improved stably along with the increase of
the number of fitness evaluation in population and subpopulations.

4.3. Comparison with other distributed DE algorithms

4.3.1. Computational complexity comparison

For IBDDE, DDE and FACPDE, their main operations include the
operations of the basic DE and the migration mechanism. And for
DMDE, its main operations include the hybrid DE and the migration
mechanism.

For one function evaluation, the time cost of the basic DE is
caused by the time for the differential mutation t, the time for
the crossover t. and the time for the selection t;. Each individ-
ual (solution) is D-dimensional. As a result, the time complexity
is O(D) for the differential mutation and crossover. Nevertheless,
since the improvement of an individual is not always performed,
the worst-case time complexity of the selection is O(D). For

8
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10°
10°
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Fig. 7. The performance of DMDE compared with three schemes.
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Table 2
The time complexity of the IBDDE, DDE, FACPDE and DMDE.

2955

Main operations Time Time complexity
IBDDE DDE FACPDE DMDE
DE
Differential mutation tm 0o(D) 0o(D)
Crossover te 0o(D) 0o(D)
Selection ts 0O(D) 0o(D)
Hybridization
Hooke-Jeeves te, tp - 0(2D+1)
ViV, tevy, - O(tev,,)
Function evaluation tr o(ty) o(ty)
Migration mechanism
Migration tm O((gmax/y)*m? * tn) O((gmax/y) *m* * tur)
CV3CVy tevs, - O(tevs,)
Total O(NFE * ty+(NFE — NP)* D +(gmax/1) * m? * ty) O(NFE  ty + ((NFE — NP)/(1 + 1)) %« D + (((NFE — NP) % /(1 +

Zmax = (NFE — NP)/NP

1) # (2D +1) + tevyy)) + ((Gmax /1) + M # (tm + tevsy )
Zmax =((NFE — NP)/(1+n)+NP)

IBDDE, DDE and FACPDE, individuals excepting initial NP ones
involve the operations of DE. NFE denotes the maximal number
of function evaluations. The number of the individuals manip-
ulated by DE is NFE—NP. Since there are NP individuals in
every generation, the number of these individuals can also be
expressed as gmax * NP, where gmax = (NFE — NP)/NP. So, the time
complexity of the basic DE is O((NFE — NP)*D) for IBDDE, DDE
and FACPDE. In addition, the number of the migration is gmax/y
in the whole evolution. For each subpopulation, the migrated
individual and the replaced individuals of its neighbor subpop-
ulations need to be chosen in the process of migration. Since
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there are m subpopulations in the whole population, the time
complexity of the migration is O((gmax/r)* m2«ty) for IBDDE,
DDE and FACPDE, where ty denotes the time for one migra-
tion. The whole time cost of the algorithm can be represented
by the sum of the time for total function evaluations and the
time for the operation corresponding to the function evaluation.
In a word, the time complexity of the IBDDE, DDE and FACPDE
is O(NFE* ty+(NFE — NP)* D + (gmax/1) * m? « ty), where tris the time
for one function evaluation.

For DMDE, the time complexity of the differential muta-
tion, crossover and selection is also O(D) for one function
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Fig. 8. The trend of the CV, the best and the worst fitness value of the whole population and the subpopulation for fg. (a) The performance of the whole population. (b) The

performance of the 4th subpopulation.
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evaluation, which is the same as those in the compared algo-
rithms. However, in DMDE, the basic DE can be integrated with
the Hooke-Jeeves algorithm when the conditions are satisfied.
Since the basic DE and the Hooke-Jeeves execute the func-
tion evaluation, the equation NPxgmax +71* NP* gmax = NFE — NP,
where 0 <n <1 is established, then gmax =((NFE — NP)/(1 +n)* NP)
is obtained in DMDE where NP*gmax is the number of indi-
viduals manipulated by DE; 7n*NP*gmax is the number
of individuals manipulated by Hooke-Jeeves. As a result,
the time complexity of the basic DE is O((NP*gmax)*D)=
O((NP*(NFE — NP)/((1+n)*NP))*D)=0O(((NFE — NP)/(1+n))*D) for
DMDE. For one function evaluation, the time cost of Hooke-Jeeves
is caused by the time for the exploratory move t. and the time for
the pattern move t. Since the current point is perturbed in positive
and negative directions in the exploratory move and the new point
is obtained by the pattern move [see (4)], the time complexity
is O(2D+1) for the Hooke-Jeeves. So, O((n *NP* gmax)*(2D+1))=
O((n ™ NP* (NFE — NP)/((1+n)"NP))* (2D + 1)) = O(((NFE — NP) " n|
(1+7n))*(2D+1)) is the time complexity of Hooke-Jeeves in
DMDE. In addition, the time tcy,, for CV; and CV; is calculated
in the hybridization. In the migration, except t;, the time cost
includes tcy,, for CV3 and CV4. Therefore, the time complexity
of the migration is O((gmax/r) * m?  (tm + tcv,,)) for DMDE. In a
word, the time complexity of DMDE for the whole evolution is
O(NFE sty + ((NFE — NP)/(1 4 1)) D + (((NFE — NP) % 1/(1 + 1)) *
(2D + 1) + tevy, ) + ((8max/T) * m? « (ty + tcvs,)))- Table 2 shows
the time complexity of IBDDE, DDE, FACPDE and DMDE.

It is notable that, compared with the time for function eval-
uation, the time for other operations take up a small proportion
in one running iteration. Table 3 shows the comparison of the
time for function evaluation and other operations in one run-
ning iteration, where the time for all operations in one running
iteration is corresponding to those in Table 2 respectively (e.g.
Tm — tm). Therefore, these algorithms almost have the same
time cost in optimizing the same test function. Meanwhile,
the space complexity of DMDE is O(m x (NP/m) x D)=O(NP x D).

Table 3
The comparison of the time for function evaluation and other operations (unit: s) in
one running iteration.

Algorithm  Fun. fg
t

Tin Tc Ts Tm Te Tp Ta Via T V34 Tif

DDE 113 141 072 057 121 133 041 025 1258
IBDDE 1.75 142 071 035 117 175 042 027 1231
FACPDE 145 139 070 069 115 145 039 023 1143
DMDE 131 146 074 031 113 131 046 024 1139

From the above analysis, DMDE has no obvious difference with
the other three algorithms in terms of computational complex-

ity.

4.3.2. Results and performance comparison

To prove the viability of the DMDE and test its performance, the
DMDE was compared with IBDDE [13], DDE [14] and FACPDE [16].
For a fair comparison, the termination criteria, the applied basic DE
variant and its three control parameters for the three algorithms
were all set as same as the DMDE mentioned above. 30 independent
runs were performed for each algorithm. The other parameters of
the three algorithms were set as follows.

IBDDE was run with a population of 400 individuals, which is
divided into 5 subpopulations of 80 individuals each. The other
parameters were chosen according to the values in Apolloni et al.
[13], and the subpopulations exchange one individual every 100
generations. The individual to be migrated is randomly chosen from
the current subpopulation. Incoming individuals from other sub-
populations replace a randomly chosen local individual, only if the
former is better. A unidirectional ring topology was employed.

In DDE, the population holds 400 individuals, which is
divided into 16 subpopulations of 25 individuals. Following the
suggestions in Falco et al. [14], a torus mesh topology was

Table 4
Comparison in terms of minimum, mean =+ standard deviation and the average running time (s).

Fun. IBDDE DDE FACPDE DMDE

fi 2.74e+00 1.34e+01 2.04e+00 4.93e-25
3.75e+00 £ 8.53e—02 2.41e+01 £ 1.04e-01 2.69e+00+ 7.45e—02 1.00e—-23 + 2.00e—24
12.35s 12.34s 12.13s 12.03s

f 1.23e+02 7.57e+01 8.82e+01 8.04e-11
1.39e+02 + 1.44e+00 5.36e+01 £ 1.20e+00 9.23e+03 £ 3.49e+03 4.58e—10+9.10e-11
12.78s 12.75s 12.62s 12.64s

fs 4.81e+04 5.73e+03 9.67e+03 1.45e-35
7.59e+04 + 2.86e+03 2.06e+04 +2.11e+03 3.48e+04 +1.95e+03 2.38e—35+1.54e—33
14.25s 14.27s 14.26s 14.26s

fa 5.02e+01 1.96e+01 3.79e+01 1.77e-02
9.49e+01 +4.66e+00 4.24e+01 +2.92e+00 5.59e+01 +2.28e+00 2.95e—02+1.75e—03
13.89s 13.61s 13.55s 13.60s

fs 2.26e+00 1.82e+00 1.82e+00 6.55e—13
2.64e+00+0.02e+00 2.15e+00 =+ 0.04e+00 2.31e+00+0.03e+00 1.56e-12+1.34e-13
13.47s 13.38s 13.36s 13.30s

fe 6.05e+01 4.30e+01 4.56e+01 2.97e-21
6.58e+01 +5.7e—01 5.36e+01 +1.20e—00 5.26e+01 +6.34e—01 3.86e—-15+8.11e-15
13.38s 13.61s 13.35s 13.40s

fr 9.38e-02 4.30e-02 6.14e—-02 0
1.17e-01+2.23e-03 7.31e—02 +3.36e—-03 9.07e—-02 +2.67e—-03 8.21e-04+4.71e-04
13.74s 13.79s 13.60s 13.65s

fs 5.09e+02 3.74e+02 4.24e+02 2.74e+02
5.54e+02 +4.41e+00 4.50e+02 +4.99e+00 5.04e+02 +4.97e+00 3.41e+02 + 3.93e+00
13.31s 13.22s 13.15s 13.17s

fo 2.10e+03 6.53e+02 1.32e+03 2.84e+02
2.89e+03 + 8.6e+01 1.26e+03 +5.97e+01 1.90e+03 +5.19e+01 3.47e+02 +3.51e+00
12.52s 12.42s 12.30s 12.28s

fio 1.41e+04 1.32e+04 1.41e+04 8.70e+03
1.51e+04 + 6.85e+01 1.44e+04 +7.63e+01 1.50e+04 + 6.70e+01 1.04e+04 + 1.35e+02

14.02s

13.96s

13.60s 13.55s
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employed. Each subpopulation sends a copy of its best individual
to replace the worst ones of its neighbors every 5 genera-
tions.

FACPDE was run with a population of 400 individuals, which is
divided into 5 subpopulations of 80 individuals. According to the
suggestions in [16], the migration occurs if rand <0.2 every gener-
ation. The individual with the best fitness is duplicated and then
replaces a randomly selected individual of the neighbor in a unidi-
rectional ring.

Similar to IBDDE and FACPDE, DMDE was run with a popula-
tion of 400 individuals, which is divided into 5 subpopulations of
80 individuals each. The migration period was set to y =100. The
best individual in each subpopulation is duplicated and replaces
the worst one of its neighbors in the von Neumann topology (see
Figs. 1 and 4).

Table 4 shows the results obtained by IBDDE, DDE, FACPDE
and the proposed DMDE to solve 50-dimensional problems f;—fi0.
Regarding each test problem, each algorithm ran independently
30 times. The minimum, the mean plus standard deviation of the
objective values found and the average running time for 30 runs
are listed in Table 4. The best results are highlighted in boldface.

Results in Table 4 show that DMDE has a very good perfor-
mance for the test problems fi—f7, since it can find those solutions
with the best minimum, average and standard deviation values
and outperform the other three algorithms with a large margin.
DMDE provides the best minimal and average values among the
algorithms for fi. As for fg and fg, DMDE achieves the best mini-
mum, average and standard deviation. For one running iteration,
on average, DMDE takes up the least amount of time for fi, f5, fg
and f¢ and approximate time for other functions compared with
the other three algorithms. In this sense, DMDE is a very efficient
algorithm for various test problems.

Fig. 9 shows the average convergence trends of the compared
algorithms. All algorithms were run 30 times, and 11 points were
recorded every time. For every point, the results were obtained by
averaging the fitness value of 30 times.

Fig. 9 shows the results of the average performance trends. The
DMDE algorithm is obviously superior to IBDDE, DDE and FACPDE.
The DMDE has good convergence speed during the early stages of
the evolution for f4 and f1¢, and it detects high quality solutions dur-
ing the initial generations. The performance gap between DMDE
and the second best algorithm is much larger for f, f3, f5 and fg.
Besides, regarding f3, fs and fz, DMDE has a great ability to evolve
the discovered objective value even if the number of function eval-
uations reaches 10°. Although DMDE converges slower than DDE
and FACPDE for f, and slower than FACPDE for fq, it continuously
improves on its solutions and outperforms the other algorithms at
the end of evolution.

The comparison shows that the proposed DMDE is capable of
tackling both unimodal and multimodal problems. The DMDE is
very efficient and has obvious advantages over the three state-of-
the-art distributed DE algorithms.

5. Conclusion

A novel distributed memetic differential evolution incorporat-
ing two learning mechanisms, namely DMDE, was presented in this
paper. The proposed method is inspired by two strategies: the pop-
ulation structure often used in distributed DEs and the hybridiza-
tion strategy often adapted in MAs. The former strategy divides
the initial population into multiple subpopulations according to
the von Neumann topology and realizes the periodical information
exchange by migration. And the latter idea takes DE as an evolu-
tionary frame that is assisted by Hooke-Jeeves algorithm to balance
exploration and exploitation. In the evolution process, the charac-
teristics of the Lamarckian learning and Baldwinian learning are

analyzed and the two learning mechanisms are coordinated accord-
ing to the coefficient of variance. The cooperation strategy was
applied in the process of information migration among subpop-
ulations as well as the hybridization between Hooke-Jeeves and
DE. Experimental results demonstrate that the cooperation strat-
egy is effective and can achieve good performance. The DMDE was
compared with three distributed DE algorithms recently proposed
in literature. Numerical results show that DMDE has an excellent
performance in terms of solution quality and convergence speed
for all problems considered than other distributed DE algorithms.
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