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Adaptive Robust Control of Servo Mechanisms With Compensation for
Nonlinearly Parameterized Dynamic Friction

Zhiping Li, Student Member, IEEE, Jie Chen, Member, IEEE, Guozhu Zhang, and Minggang Gan

Abstract—In this brief, an adaptive robust control (ARC)
scheme with compensation for nonlinearly parameterized dy-
namic friction is proposed. Both parametric uncertainties and
external disturbances are considered in this method. Our method
takes advantage of a Lipschitzian property with respect to the pa-
rameters of nonlinearly parameterized model in the ARC design.
The outcome is that the number of parameters to be updated in
the ARC is equal to the number of unknown parameters in the
plant, and thus the resulting control algorithm is convenient to
be implemented. We have proved theoretically that the proposed
method can not only guarantee desired transient performance for
the system, but also make the magnitude of steady-state tracking
error to be arbitrarily small in the presence of parametric uncer-
tainties only. Experimental results are given to demonstrate the
effectiveness of the proposed ARC scheme.

Index Terms—Adaptive robust control (ARC), friction compen-
sation, servo mechanism.

I. INTRODUCTION

I N SERVOmechanisms, friction may cause many undesired
phenomena such as large tracking errors, limit cycles, and

stick-slip motion. Accordingly, it is important to compensate
for the effects of friction, when high performance is needed
for servo mechanisms. Many methods have been proposed to
solve the friction compensation problem [1], [2]. Some control
schemes (e.g., in [3], [4]) are based on an accurate of ine fric-
tion estimation. The main drawback of this kind of methods is
that, their design procedures need accurate models of friction,
which are dif cult to acquire. To overcome this problem, adap-
tive friction compensation techniques based on different friction
models have been proposed in the literature [5]–[7]. In most of
these results, friction is modeled as a static map between ve-
locity and friction. However, in applications with high precision
positioning and with low velocity tracking, friction compensa-
tion based on static models is not always satisfactory.
Several behaviors of friction, such as presliding displace-

ment, hysteresis, friction lag, and etc., cannot be represented
by the static models. To capture these effects, researchers
have proposed a number of dynamic friction models [8]. For
example, Dahl [9] proposed a dynamic model to capture the
spring-like behavior during stiction. In [10], a dynamic friction
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model called LuGre model is proposed. This model captures
various friction effects such as the Stribeck effect, hysteresis,
presliding displacement and varying break-away force.
Based on the LuGre model, several model-based controllers

have been developed. In [10], a model-based controller with
a friction state observer was proposed, under the assumption
that the system parameters are exactly known. However, it is
usually dif cult to capture the nonlinear features of friction ex-
actly, since every physical system is subject to certain degrees
of model uncertainties. To account for the uncertainties in the
LuGre model, some adaptive controllers have been presented.
Two globally stable model-based adaptive friction compen-
sation schemes were proposed in [11] to address parameter
changes associated with normal force variation or temperature
variation. In [12], an adaptive controller utilizing a nonlinear
observer/ lter structure was proposed to handle non-uniform
variations in the friction force by assuming independent co-
ef cient change as temperature varies. In [13], an adaptive
controller is developed by introducing a nonlinear observer,
which is utilized to estimate the unmeasurable friction state. In
[14], the neural network is used to parameterize the unknown
dynamic friction bounding function, and then an adaptive neural
network controller is developed. However, these adaptive con-
trollers suffer from two main drawbacks—unknown transient
performance and possible non-robustness to disturbances.
To overcome these drawbacks, a dynamic friction compensa-

tion strategy is proposed in [15] by utilizing the idea of adaptive
robust control (ARC) [16], [17], where the robust control term
is used to guarantee desired transient response, and the adaptive
control term is used to achieve favorable steady-state tracking
accuracy. In this method, the parameters related to the Stribeck
effect are assumed to be known. With these known parame-
ters, a dual-observer is constructed to estimate the unknown
friction states. A similar result is proposed in [18]. However,
different from the method in [15], a modi ed LuGre model is
adopted in [18], and thus the digital implementation problems
of the LuGre-model-based dynamic friction compensation can
be avoided. However, the above adaptive robust controllers are
based on the assumption of known Stribeck curves, which is not
easy to obtain.
In this brief, a novel ARC-based dynamic friction compen-

sation strategy is proposed. This method does not need pre-
viously known Stribeck-effect-related parameters in its design
procedure. Thus, it is more convenient for engineering applica-
tion than the adaptive robust controllers proposed in [15] and
[18]. Unlike the adaptive neural network friction compensator
proposed in [14], the friction compensator is synthesized di-
rectly according to the nonlinearly parameterized model in our
method. Hence, the number of parameters to be estimated is
equal to the number of unknown parameters of the plant, which
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is much less than the parameter number of the adaptive neural
network controller in [14]. Motivated by the recently proposed
method in [19] and [20], our method takes advantage of a Lip-
schitzian property with respect to the parameters of nonlinearly
parameterized model in the ARC design. Unlike [19] and [20],
where the friction compensation is based on Stribeck model and
only the parametric uncertainty is considered, this brief focuses
on the adaptive robust control with friction compensation based
on LuGre model for a DC servomechanism subjected to para-
metric and nonlinear uncertainties.
This brief is organized as follows. The problem description

is presented in Section II. The design procedure of the proposed
ARC is provided in Section III. The stability proof and perfor-
mance analysis are given in Section IV. Experimental results are
described and analyzed in Section V and conclusions are drawn
in Section VI.

II. DYNAMIC MODELS AND PROBLEM FORMULATIONS

A. Dynamic Model of Servo Mechanisms

By ignoring the current dynamics, the mechanical and elec-
trical dynamics of a current-controlled DC servo mechanism
can be described as [21]

(1)
(2)

where is the angular position; is the current input command;
, , , and represent the torques imposed on the motor

shaft: generated torque, friction torque, load torque, and distur-
bance torque, respectively; represents the total motor and load
inertia; denotes the electrical-mechanical energy conversion
constant. Using the dynamic frictionmodel proposed in [10], the
dynamic friction torque can be described by

(3)

(4)

where represents the unmeasured internal friction state; ,
, and are positive parameters that can be physically ex-

plained as the stiffness of bristles, damping coef cient associ-
ated with , and viscous coef cient. The function is utilized
to describe the Stribeck effect [10] and given as follows:

(5)

where is the Stribeck velocity; and represent the levels
of Coulomb friction and stiction, respectively. In general,

, thus, (5) implies that . The friction
model given by (3)–(5) re ects the dynamic effects caused by
the de ection of bristles, which are used to model the asperities
between two contacting surfaces. It is shown in [11] and [22]
that the above friction model has the following nite bristle de-
ection property.

Property 1: Under the assumption that
, we have, if , then
.

This property will be used in the subsequent controller design.
Here, all the parameters of the plant (1)–(5) are assumed to be
unknown. Thus, it can be concluded that the plant studied in
this brief is subject to dynamic friction, parametric uncertainties
and external disturbance. The angular position is regarded as
the system output. De ning the angular position and angular
velocity as the state variables, i.e., , as the
mean value (direct offset) of and as the disturbance
term, i.e., , from (1)–(5), the entire system
can be expressed in the state space form as

(6)

where denotes the lumped disturbance;
is the parameter

vector consisting of the linearly parameterized coef cients;
is the

parameter vector consisting of the nonlinearly parameterized
coef cients.

B. Assumptions and Problem Formulations

For simplicity, the following notations will be used: for the
th component of the vector , for the estimate of , for
the minimum value of , and for the maximum value of
. The operation for two vectors is performed in terms of the
corresponding elements of the vectors.
In this brief, we assume that the uncertain parameters are in

certain known intervals, as shown in Assumptions 1 3. In
addition, Assumption 4 is made for the desiredmotion trajectory

.
Assumption 1: ,

, where , , , and
are previously known positive numbers. In addition, it

is assumed that and , which is coherent
with the fact that and .
Assumption 2: The stiction is upper bounded, i.e.,
, where is known.

Assumption 3: The disturbance is bounded, i.e., ,
where is known.
Assumption 4: The desired trajectory is continuous with
rst derivative and second-order derivative available.
Consider model (6) which has dynamic friction nonlinearity,

parametric uncertainties and disturbance. The control problem
of this brief can be stated as follows. Given the desired motion
trajectory , the objective is to synthesize a control input
such that the system output tracks as closely

as possible in spite of dynamic friction and various model un-
certainties.
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III. ADAPTIVE ROBUST CONTROL

In this section, we are going to detail the adaptive robust con-
trol design for the plant (6).

A. Discontinuous Control Law

The control law design follows the ARC synthesis procedure
proposed in [16], [17] and [25]. First, de ne a tracking-error-
index-like variable [26] as

(7)

where is the output tracking error, and
is any positive feedback gain. Since

is a stable transfer function, if is small or con-
verges to zero exponentially, then the output tracking error
will be small or converge to zero exponentially. Differentiating
(7), from (6), we obtain

(8)

where . De ne a positive de nite function
as . Then, from (8), the derivative of can

be derived as

(9)
From the right-hand side of (9), we observe that a nonlinearly
parameterized term in uences the derivative
of .
Viewing Property 1 and Assumption 2, we obtain the fol-

lowing result.
Lemma 1: Under Assumption 2, if , then

.
Proof: Noting that , from Assump-

tion 2, we get . Combining with Prop-
erty 1, it can be concluded that , if

, which yields the result of Lemma 1.
From Lemma 1, one has

(10)

De ne a nonlinearly parameterized function as

(11)

To nd the bound of , the de nition of Lipschitzian
condition is recalled rst.
De nition 1: The function is said to be locally Lip-

schitzian in if there exist continuous functions ,
such that the following inequality holds:

(12)

where , .
Lemma 2: The function is Lipschitzian in

if exists and is continuous in , fur-
thermore, the continuous functions , in
(12) can be chosen as any continuous function satisfying

.

Proof: See Appendix A.
Then, from Lemma 2, we know that given by (11)

is locally Lipschitzian in , because exists and
is continuous in . Combining Lemma 2 with (11), and
noting Assumption 1, it is easy to check that one choice of

, is

(13)

where with . In view of (10)–(13), it
follows that

sgn
sgn
sgn (14)

where and is
de ned as

(15)

According to Assumption 1, we know that ,
where and . For the con-
venience of deduction, we de ne the parameter vector as

. Then, it is easy to check that the
upper and lower bounds of are and

.
Viewing (9), (14), and (15), we obtain

sgn
sgn (16)

According to (16), the control law can be synthesized by using
the ARC approach. The control input is designed as

sgn
sgn

(17)
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where is the estimate of , ; is the estimate
of ; is a controller parameter to be chosen; is
an adaptive control term; is a robust control term consisting
of two parts, i.e., and . The robust control function
should be selected to satisfy

(18)

(19)

where and
is a design parameter. The parameter is updated by

(20)

where represents the projection operation whose de ni-
tion can be seen in [27], the positive de nite matrix represents
the adaptation rate, the adaptation function is synthesized as

. Since (as is indicated in Assump-
tion 1) and the projection operator is used in the adaptation law
to guarantee , we know that there must be cer-
tain robust control function satisfying (18) and (19). There
are many ways to design . One alternative is to let

where is any function or constant satisfying
. Readers can refer to [16] and [24]

for other choices of .
Lemma 3: Suppose that the control law (17) and the adapta-

tion law (20) are applied to control the plant (6), which satis es
Assumptions 1 4. Then, no matter what the adaptation func-
tion is, the controller guarantees that: The closed-loop system
is globally stable, and the positive de nite function de ned
by is bounded above by

(21)

where .
Proof: Substituting (17) into (16), we have

(22)

Combining with (19), it follows that

(23)

which implies (21).
Remark 1: Since is nonincreasing and bounded

from below by zero, according to the inequality (21), one has

It indicates that the tracking error will exponentially
converge to a bounded value . There is no overshoot and
the convergent rate can be prescribed by tuning parameter

Fig. 1. Structure of the two-axis servo system.

which is determined by control gain. Moreover, in order to
obtain better nal tracking accuracy, smaller or larger is
required which can be realized only by choosing large robust
control gain when the parameter adaptation is closed. However,
too large gain will lead the controller to be saturated. Thus,
activating the adaptation mechanism is very helpful to reduce
the conservatism of the controller.
Remark 2: Lemma 3 shows that the discontinuous control

law can not only guarantee the closed-loop system to be stable,
but also make the tracking error converge to a small prescribed
region. However, due to the discontinuity at caused
by the term , the closed-loop system controlled by the
control law (17) may suffer from chattering, which is not desired
in the application. To solve this problem, in the next subsection,
we will do some modi cation to the above control law design
so that a continuous control action can be obtained.

B. Continuous Control Law
A continuous control law can be derived by modifying the

tracking-error-index-like variable. Here, we introduce a new
variable as follows [19]:

(24)

where

sgn
(25)

with , , for . It has been
indicated in [19] that is a continuously differentiable function
of (see Fig. 1). From (25), can be derived as

(26)

De ne a positive de nite function as .
Then, from (8), it follows that

(27)
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The (25) and (26) imply that, for any , we have
. Hence, to make converge to zero, we only need to let

. Similar
to (14), it can be deduced that

(28)

From the de nition of , it is easy to verify that

(29)

where is a continuous function of and de ned as

2

Combining (28) and (29) with (27), one has

(30)

Based on the above inequality, the continuous control law can
be synthesized as

(31)
The robust control function should be selected to satisfy

(32)
(33)

where , and
is a design parameter which can be arbitrarily small. Similar to
the discontinuous control law design, one alternative of is

where is any function or constant satisfying
. Thus, the continuous control law can assure the

closed-loop system stable if the adaption law (20) is applied
with . The rigorous proof of this result will
be given in the Section IV. It will be veri ed that, by utilizing
the above adaptation law, the modi ed tracking-error-index-like
variable can be steered to origin, in the presence of parametric
uncertainties only.

IV. STABILITY PROOF AND PERFORMANCE ANALYSIS

To analyze the control performance, we de ne the following
level set of the positive de nite function , for any

(34)

In addition, a constant is de ned as

(35)

where is any positive number. It can be arbitrarily small.
Lemma 4: Suppose that the control law (31) and the adapta-

tion law (20) are applied to control the plant (6), which satis es
Assumptions 1 4. Then, no matter what the adaptation func-
tion is, the controller guarantees the closed-loop system to be
globally stable, and the trajectories starting outside will
enter in a nite time and remain inside there-
after; moreover, the trajectories starting from will re-
main inside this level set.

Proof: See Appendix B.
Remark 3: From the proof of Lemma 4, we observe that,

the tracking-error-index-like variable can be steered into a
suf ciently small region by increasing the robust control gain.
However, every practical system is subject to input saturation.
To avoid too large control action, the robust control gain should
not be set too large. In fact, the adaptive control term can fur-
ther improve the accuracy of the servo system, which will be
demonstrated in the following deduction.
Theorem 1: Under the assumptions 1 4, the closed-loop

system comprised of the plant (6), the control law (31) and the
adaptation law (20) has the following properties.
1) No matter what the adaptation function is, the tracking-
error-index-like variable satis es ,

, meaning that the tracking error will be
within a prescribed bound after a nite time.

2) If , i.e., in the presence of parametric uncertainties
only, and the adaptation function is given by (20) with

, then, in addition to results in i), we
have as , which implies that

as .
Proof: See Appendix C.

Remark 4: Theorem 1 shows that the tracking error bound
of the closed-loop system with the adaptation function (20) is
much smaller than that of the system without considering the
adaptation law. Thus, the tracking accuracy is improved by pa-
rameter adaptation. On the other hand, due to the utilization
of parameter adaptation, the system can achieve high accuracy
without using large robust control gain.

V. EXPERIMENTAL RESULTS

In this section, experimental results are obtained from a DC
torque motor servomechanism to demonstrate the effectiveness
of the proposed method.

A. Experimental Setup

According to our previous work [27], a two-axis turntable
servo system (see Fig. 1) is set up as a test-bed.
The position and velocity signals are collected by the optical

encoder with 0.0005 degree resolution. The controller is im-
plemented through an Xpc-Target that consists of a target per-
sonal computer and the interface card NI PCI-6052E. The sam-
pling rate of the servo controller is 2 kHz. Experiments are con-
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Fig. 2. Stribeck curve.

Fig. 3. Desired trajectory.

ducted on the pitch-axis which undertakes the payload (e.g., TV
camera). The unbalance payload is considered as the external
disturbance.

B. Determination of the Bounds of Unknown Parameters

From the (6), we know that the unknown parameters
are relative to , average load torque and parameters
in friction model. From our previous work [27], we know

kgm , N/A, Nm. To
determine the friction parameters, of ine parameter identi -
cation is carried out following the same procedure as in [10].
The Stribeck curve is shown in Fig. 2, from which we can
roughly get Nm and

Nm rad/s .
To obtain , let the system operate around zero

velocity, give it a step input and measure the output re-
sponse. With these experiments, nally, we get 421.6
N and Nm rad/s . Consequently, we can get

N, N. The motor
driver is set as torque mode. The gain of the pseudo ampli er
is obtained from the driver speci cation. Then noting
(6), we know that N/A kgm ,

rad s ,
N kgm , ,

m rad/s , ,
rad/s . The bounds of the

parameter variations in the experiment are chosen as
, ,
, . To

Fig. 4. Tracking performance (solid line: proposedmethod, dashed-dotted line:
deterministic robust controller).

Fig. 5. Parameter estimates.

determined the value of , the pitch-axis is forced to run at a
constant velocity. Then from (4), one has .
Consequently, the value of is estimated as 0.2
Nm.
From the de nition of control robust term , one knows

that the control gain is determined by the bounds of unknown
parameters. It indicates that if the bounds are chosen too loosely,
the nal controller may be very conservative. Even more, in the
real application, it will lead the controller to become saturated
and make the system unstable. As a result, we rst estimate
the unknown parameters roughly in the system through of ine
identi cation. Then the lower bound and upper bound are set as
less or more than 10% of the estimates, respectively [28], [29].
Actually, in real application, the feedback gain of the robust
controller term is easily determined by try-and-error method.

C. Experimental Results

In our experiment, the unbalance torque caused by gravita-
tional torque is considered as the main external disturbance. The
constant offset is estimated online. Thus, the value of is sup-
posed as . The controller parameters are chosen as
follows:
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Noting the de nition of , one has .
In the real application, the value of is chosen by try-and-
error method. The desired trajectory is shown in Fig. 3 (i.e.,
with maximum velocity 4 rad/s and maximum acceleration
of 10 rad/s ). The tracking performance and control effort are
shown in Fig. 4 and Fig. 5. (The curves of parameter estimates
and error are omitted due to the limited space.)
From Fig. 4, we can see that the tracking error decreases grad-

ually because of the parameter adaptation. As seen from the
Fig. 5, the control effort varying between 5 V and 5 V is up
to half of the limits. This indicates that a more accurate tracking
error could be obtained if the control gain increases.

VI. CONCLUSION

We have developed an adaptive robust control (ARC) scheme
with dynamic friction compensation for a DC servomechanism.
This scheme utilizes a Lipschitzian property to re-parameterize
the plant, and thus the number of parameters to be updated in
the ARC is equal to the number of unknown parameters of the
plant. Moreover, the friction state observer is not needed in this
method. Thus, the resulting control algorithm is convenient for
engineering application. It has been proved that the proposed
method can not only guarantee desired transient performance
for the system, but also make the magnitude of steady-state
tracking error arbitrarily small in the presence of parametric
uncertainties only. The experimental results show that the pro-
posed ARC scheme can achieve desirable control performance
for the servo mechanisms with dynamic friction effects.

APPENDIX A

Proof: Let and be xed. De ne
for all . It is easy to verify that

. Since, in the domain , the function
is continuously differentiable in for any xed , we can
conclude that is also continuously differentiable in
. According to the mean value theorem, there exists
such that

Since , we have

From De nition 1 and the above inequality, we can obtain the
result of Lemma 2.

APPENDIX B

Proof: The proof of Lemma 4 is divided into two parts, i.e.,
i) ; ii) .
i) Consider the case of . According to
(34), the states outside satisfy , which
implies . From the de nition of ,
it can be derived that . Then, according to (26),
we obtain that . Substituting (31) into (30),
we have

(36)

Combining with (33) and (35), it follows that

(37)
Thus, it can be concluded that the trajectories starting
outside will enter in a nite time.

ii) Consider the case of . In this case, we have

(38)

From (26), one has . Then, noting that
, in view of (38), it follows that

(39)

which implies that when ,
the Lyapunov function must be decreasing. Thus, the
states inside will not escape and remain
in it thereafter.

Combining the analysis in i) and ii), we can obtain the results
in Lemma 4.

APPENDIX C

Proof: From Lemma 4, we know that, no matter what the
initial conditions are, will enter the level set after a -
nite time of running. It implies that
. From the de nition of , we have . Since

, it can be concluded that ,
, which completes the proof of i).

Then, we prove ii). De ne a positive de nite function as

(40)
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If , then from (6), (20), (31) and (34), the derivative of
can be derived as

Noting that and , According
to the properties of projection operation and (32), the above in-
equalities can be simpli ed as

(41)

De ne a quantity as . Then, integrating
two sides of (41) from to yields

(42)

Noting that is always bounded due to the pro-
jection mapping, from the result of Lemma 4, we know that

is bounded. Accordingly, it can be concluded that
exists and is nite.

On the other hand, we can also derive that is uniformly
continuous. The deduction is as follows. The de nition of
shows that . Noting that is bounded,
which can be justi ed by Lemma 4, we denote the upper bound
of as , i.e., . Besides, the (26) shows that

. From (36), (38) and Lemma 4, we know that
is bounded, thus is uniformly continuous, namely, for

any and , there exists such
that implies . On the
other hand, from the de nition of , we can observe
that is also uniformly continuous, and thus for any

, there exist such that im-
plies . For any ,
we select and such that . Then,
it can be obtained that, if , then

Since is arbitrarily chosen, is uniformly continuous.
Therefore, it can be concluded by the Barbatlat’s lemma that

as . From (26) and the de nition of , one has
if and only if , and then we obtain

equals to . In view of the de nition of , it follows that

as , which completes the proof
of result ii).
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