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Abstract

A high-precision measurement and calibration device is proposed in this paper. The resolution
of this device can reach 18 binary bits, and it can measure whether or not optical encoders
reach their nominal accuracy. The method based on the adaptive differential evolution-Fourier
neural network (ADE-FNN) is proposed to improve the accuracy of optical encoders. This
method makes full use of the FNN to establish an error compensation model for optical

encoders and introduces an ADE algorithm to optimize the weights of the FNN. Compared to
a nonlinear least-squares method, a back propagation neural network and a standard FNN, this
method possesses many advantages, such as the fine nonlinear approximation capability, faster
convergence speed and easiness of finding the global optimum. Experimental results
demonstrate that after being calibrated by this method, significant improvement regarding the
accuracy of optical encoders can be achieved.

Keywords: optical encoder, adaptive differential evolution, Fourier neural network, calibration

(Some figures may appear in colour only in the online journal)

1. Introduction

An optical encoder is a kind of angular sensor, as shown
in figure 1, which is an opto-mechanical-electronic device
transforming a light distribution into two sinusoidal electrical
signals that can be used to define the relative position between
a reading head and an angular scale [1, 2]. By virtue of high
accuracy, wide measurement range, high response frequencies,
light weight and high resolution, optical encoders have been
widely used in modern military, aerospace, bioscience and
other precision applications [3, 4].

To improve the accuracy of the optical encoder two factors
to be considered are as follows:

0957-0233/13/055007+09$33.00

e product inspection is necessary to make sure that the
actual accuracy of optical encoders satisfies design
specifications;

e recalibration is compulsory to guarantee that optical
encoders maintain the nominal accuracy, affected by
mechanical wear and corrosion, and ageing of electronic
components after a period of operation.

In the existing literature, the accuracy of optical encoders
is measured by means of other higher accuracy angular sensors
which are used as a benchmark for angular measurement. In
[5], a regular 23-faced polygon is chosen as the benchmark,
a high-precision rotary table controls the rotation of an
optical encoder and data are acquired when the photoelectric
collimator is perpendicular to one face of the polygon.
Although this equipment can guarantee higher measurement

© 2013 IOP Publishing Ltd  Printed in the UK & the USA
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Table 1. Description of main components.
Item Description
MCU 4 kB RAM
PC 2 GB RAM, Core i3 processor

Figure 1. Optical encoders.

accuracy, it has the drawbacks of low automation, high cost
and complex operation. Meanwhile, the resolution of this
equipment is restricted by the number of faces of the polygon
as well. On the basis of [5], the upgraded equipment described
in [6] can automatically acquire the readout of the encoder. In
[71, acalibration device is described comprising an inner rotary
table, an outer rotary table, an electronic autocollimator and
an irregular five-faced polygon featuring high-quality faces.
The polygon is mounted on the inner rotary table while the
autocollimator is placed on the outer rotary table. During
the measurement, the rotational axes of the two rotary tables
should be regulated to be congruent. There exist many careful
adjustments so that the pyramidal error of this polygon may be
minimized or omitted. Such equipment cannot be generalized
because of the high cost of the rotary table and the polygon.

No matter how well optical encoders are designed and
fabricated, their actual accuracies do not match the nominal
accuracy. Therefore, much effort has been made to find an
effective and feasible software-based calibration method [8] to
improve the accuracy of optical encoders. The nonlinear least-
squares method (LS) was adopted to compensate the encoder’s
circular grating error [9]. It has many shortcomings, such as
strong dependence on uniform sampling and large sample
data, complex operations and easiness of being influenced by
the size of training data. The back propagation (BP) neural
network method with hybrid modeling adopting the 8:20:6
model (8 inputs, 20 hidden nodes and 6 outputs) was employed
in [10, 11] to improve the calibration precision, which adopts
the sigmoid activation function and Levenberg—Marquardt
(LM) algorithm to train the network. It can approximate
nonlinear mapping relationships without uniform sampling.
However, inevitably, BP has some obvious limitations. The
convergence speed is very slow or even non-existent and the
algorithm may fall into any local minimum. A combination of
the sine function and particle swarm optimization (PSO) was
proposed, improving the measurement accuracy of circular
grating angle sensors [12].

For the drawbacks of the above methods, novel
methodologies are required to solve the aforementioned
problems. This is the motivation for the upgraded measurement
and calibration device (MCD) and a novel hybrid calibration
method based on the adaptive differential evolution (ADE)
algorithm and Fourier neural network (ADE-FNN). The FNN,
whose activation function is an orthogonal Fourier series, is
used to model the optical encoder error, and the ADE algorithm
is introduced to train the FNN’s weights. The main features of
this hybrid method are summarized as follows.

Stepping motor
Stepping motor driver
Worm reduction gear

Three-phase, step angle 0.6°
Three-phase hybrid driver
Reduction ratio:109

e The FNN is easy to realize and can approximate nonlinear
mapping relationships at an arbitrary accuracy [13, 14].

e The FNN with an orthogonal Fourier series transforms a
nonlinear optimization problem into a linear optimization
problem, which significantly improves the convergence
speed and effectively avoids local minima.

e The FNN is easy to realize both in computing and
hardware, because the structure of the FNN is limited
by system bandwidth and clear physical meaning. Each
neuron can be regarded as the frequency filter of the
respective frequency component, so that the network
structure is limited by the system bandwidth. All the
nonlinearities and uncertainties of the dynamical system
are lumped together and iteratively compensated by the
FNN so that a priori knowledge of the system model is
not required [15].

e The FNN’s initial weights, calculated by the ADE
algorithm, do not rely on the system’s prior knowledge.

e The FNN has high precision and strong generalization
ability. The calibration operation without uniform
sampling is very simple.

This paper is organized as follows. In section 2, we
briefly elaborate the skeleton of the special MCD. Section 3
describes the structure and learning algorithm of the ADE-
FNN. Section 4 provides different criteria to evaluate the
measurement accuracy of optical encoders. In section 5, the
ADE-FNN is used to improve the accuracy of optical encoders,
measured by the MCD, which do not reach their nominal
accuracy. Conclusions are summarized in section 6.

2. Measurement and calibration device

The experimental data are collected by the MCD which is an
electromechanical device. In 2007, the prototype was devised
by Deng et al [16]. The upgraded device is introduced in this
paper, as shown in figure 2.

2.1. Hardware configuration

The structure of the MCD is shown in figure 3, and the
description of the main components is listed in table 1. Step
angles of 1/8, 1/4,1/2 and 1/1 can be chosen on the stepping
motor driver. The angular sensor is required to measure and
calibrate in the following experiments.

The resolution of the MCD can be calculated by the
following equation:

Ryey = SSnch'/Rrv (1)
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Figure 2. The MCD made for measuring and calibrating optical encoders. () Stepping motor, (2) angular sensor, Q) multi-interface, (@ worm
reduction gear,(® incremental encoder, (® control box (including the MCU and motor driver).

Stepping Motor

Worm Reduction Gear

Incremental Encoder .—}
V' N

Motor Driver

Multi-interface .

Angular Sensor .

Figure 3. The MCD structure.

where Ry is the resolution of the MCD, S is the step angle of
the stepping motor, S,; is the number of micro-step divisions
(1/8, 1/4, 1/2 or 1/1), F, is the conversion factor (3600 here)
and R, is the reduction ratio. Numerically, R4y, = 2.48".

2.2. Software architecture

The software architecture of the MCD is shown in figure 4.
There are two parts: MCU software and PC software.

2.2.1. MCU software. MCU software is developed to control
the rotation of the stepping motor according to the parameter
setting in the human—computer interaction interface, collect
the output of the optical encoder, as well as communicate with
the PC. The monitoring module monitors the stepping motor
by reading the incremental optical encoder.

2.2.2. PC software. The rotation information, such as the
rotation direction and rotation intervals per step, is set in
the human—computer interaction interface. Experimental data
are processed and analyzed in the data processing module.
Furthermore, the error value, the mean value and the variance
of each experimental datum can be automatically calculated
(the detailed calculation formulae can be found in section 4).

The calibration module can improve the accuracy of optical
encoders which do not reach their nominal accuracy. The
kernel of the calibration module is the ADE-FNN (more details
can be found in section 3).

3. Adaptive differential evolution algorithm and
Fourier neural network

This section introduces the architecture and the learning
algorithm of the ADE-FNN, which is a kind of feed-forward
neural network. Since the initial values of the FNN’s weights
are difficult to choose, here we propose the ADE algorithm
which can effectively train the FNN’s weights.

This paper introduces the ADE-FNN into the calibration
of optical encoders. The input—output relationship of an optical
encoder can be expressed by

x = g(z), (2)

where z is the measured physical quantity and x is the output of
the optical encoder. Ideally, g(z) is a linear function. However,
this function is nonlinear in practice because of the installation
error, ageing of electronic components, etc.

The calibration block diagram of optical encoders is
shown in figure 5. The ADE-FNN is employed to establish
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Human-Computer Interaction Module |
c unication Module |

Data Processing Module |
Calibration Module |

Motor Control Module |
Real Time Display Module |
Monitoring Module |
Communication Module |
Fault Detection Module |

Figure 4. Software architecture.

Figure 5. The structure of calibration.

the inverse model f(x) [17]. The ideal result is that
optical encoders calibrated by ADE-FNN can present linear
characteristics (y = z).

3.1. Fourier series

To aid a better comprehension of the FNN, Fourier series will
be briefly outlined in this subsection.

The function y = f(x) with the period T can be expressed
with the Fourier series as follows:

> 2nmwx 2nmwx
y=a0+n221:<a,,cos T + b, sin T ), 3
1 T
w=7 [ rwa @
0

2nmwx
T

2 T
a,,:;/ f(x)cos dv, n=1,2,3,...,00, (5
0

2
e, n=1,2,3,...,00, (6)

2 (7 )
b,,:T/O f(x)sin

where ay, a, and b, are the Fourier coefficients. {1, cos Z’T’—x,
sin 2%‘, cos “’TT—X, sin “’Tf—x; .., COS 2"T’”, sin 2’;’?‘,- - -} is the set of

triangular orthogonal function bases of the Fourier series.

3.2. Fourier neural network

Assume that the FNN under consideration has a single input
and a single output (SISO). It is well known that neural
networks with one hidden layer are ample for approximating
functions that are defined in [13, 14, 18]. For this reason, the
FNN shown in figure 6 is a three-layer network consisting of
nodes and directional weighted links through which nodes are
linked. Let O/ denote the output of the ith node in the jth layer.

Layer 1. The node in this layer sends the input variable
x out, and the weights between layer 1 and layer 2 are all
equal to 1:

ol =x. ™)

Layer 1

Layer 2 Layer 3

Figure 6. The structure of the SISO FNN.

Layer 2. This layer is the so-called hidden layer. Every
node £ in layer 2 has a node function, as shown in equation (8):

07 = Sy, k=1,2,3,....,2n+1. (8)

Every node in this layer has an activation function S,
such as the sigmoid function and the Gaussian function. Here,
the expressions of activation functions are shown in equation
(9), namely triangular orthogonal function bases of the Fourier
series:

Si=1,

S = cos 2 h=1,2.3

Zh_COS T ’ — S 4 ,"'7ns (9)
. 2hmx

S2h+1 = s .

Furthermore, the weights w; (k = 1,2h,2h + 1) between
layer 2 and layer 3 are represented by the following equation:

w| = ao,
Wy, = ay, (10)
W1 = by,

where ag, a;, and b;, are the Fourier coefficients.
Layer 3. In this layer, there is only a single node. The label
> denotes the sum of the outputs of layer 2, i.e.

2n+1
0i=> 0t (11)
k=1
2n+1
=D S (12)
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= Siw1 + -+ + S2w2n + Sonp102p41 (13)

2nmwx 2nmwx

=ag+---+a,cos + b, sin (14)

" 2h 2h
:ao+...+z<ahcos Tﬂx+bhsin T’”) (15)
h=1

The aim of the training is to iteratively reduce the error
between the target value and the predicted value. There is an
unaccounted-for rule for selecting the most appropriate error
measure (or energy) function [19]. For simplicity, the squared
error E is used, as defined by the following equation:

1M
Ezzgeiz,

i=1,2,3,...,M, a7

where Y; is the ith output value of the FNN, y; is the ith
desired output value of an optical encoder (measured physical
quantity) and M is the size of the training sample.

From the above description, we can find that
equations (14) and (3) are equivalent [20]. The output of the
FNN is the anterior 2n 4 1 items of the Fourier series and
the number of nodes in layer 2 increases (or decreases) in
pairs. There exists no exact method to determine the number
of nodes in each hidden layer [21]. Some articles [13, 22, 23]
have given some methods and empirical formulae to obtain
the preliminary number of hidden layer nodes. We give an
empirical formula to select the preliminary n according to the

papers [22, 23]:
n=2y/(No+2)M,

where Ny is the size of the output neurons and M is the
size of the training sample. The structure of the used FNN
is determined by increasing the number of FNN nodes until
no further improvement of accuracy can be observed. It means
that a larger n brings a higher fitting accuracy with the side
effect that the training time will rapidly increase, and this may
have the risk of overfitting.

The original mapping relationship between the inputs and
outputs of the FNN is nonlinear. However, the output of the
FNN is a linear combination of all nodes’ output in layer
2. So, a nonlinear optimization problem is transformed into
a linear optimization problem by the FNN with a triangular
orthogonal activation function. This key transformation must
considerably improve the convergence speed and avoid being
trapped in local minima.

Unfortunately, it is time-consuming and formidable to
choose initial weights of the FNN. Moreover, the convergence
speed depends on the initial weights. Here, we introduce an
ADE algorithm, as discussed in subsection 3.3, which can
quickly and effectively train the FNN’s weights and overcome
the difficulty of choosing the initial weights.

(16)

ei=Yi_)’i7

(18)

3.3. Adaptive differential evolution algorithm

The differential evolution (DE) algorithm, put forward by
Storn and Price [24], is a new heuristic method for the global

Initialization

v

Evaluation <+

v

YES

—  Termination?

¢NO

—> End

Figure 7. Flowchart of the ADE algorithm.

optimization over continuous spaces. A flowchart of the DE
algorithm is shown in figure 7.

The pressing task derived from the FNN, consisting of
parameter D = 2n + 1, can be represented by a D-dimensional
vector. A population at each generation G is composed of NP
D-dimensional parameter vectors p;s,i = 1,2,3,...,NP.
NP is a constant integer € [SD, 10D]. The initial population
is randomly generated, and the population is optimized by
executing the loop of the mutation, crossover and selection
operations.

Mutation. For each target vector p; ;, a mutant vector is
produced as follows:

Vi,G+1 = pr‘1,G +F- (prg,G - pr3,G)9 (19)

where i, ry, 1y, 13 (I £ 1y # 1y #13) € [1,2,3,...,NP] are
randomly chosen, and F is the scaling factor with F' € [0, 2].
To satisfy the condition that these four indices are mutually
different, the NP should be greater than or equal to 4.
Crossover. For the purpose of enriching the diversity of
the perturbed parameter vectors, a binomial crossover is used
[24]. A trial vector can be generated in the following way:

Ui G+1 = Uji,G+1

vjic+1 if randb(j) < CR
— or j = rnbr(i),
B DjiG if randb(j) > CR (20)

and j # rnbr(i),

where j = 1,2,3,...,n, randb(j) € [0, 1] is the jth
evaluation of a uniform random number and rnbr(i) €
[1,2,3,..., n]isarandomly chosen index. CR is the crossover
rate with CR € [0, 1], which has to be determined by the user
in the standard DE algorithm. If CR is more than or equal to
the random number randb(}j), the trial parameter is inherited
from the mutant, v;; g41; otherwise, the parameter is copied
from the vector, p;;¢. So it is conducive to maintaining the
diversity of the population while the population does not easily
produce a new individual.
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So, we introduce the following strategy to regulate CR
adaptively (see equation (21)):

CR; = CRpip + (CRyas — CRpp) Lm0
f max — f min
where CR; is the crossover constant of the ith individual,
CRpin and CR,,.x are the minimum and maximum crossover
constants, respectively. f; is the fitness of the ith individual,
finin 18 the minimum and fi,,,« is the maximum individual fitness
in the current population.

Then, for individuals with lower fitness, a larger CR will
increase the contribution of the mutant vector to the trial
vector and accelerate the elimination of these individuals. For
individuals with higher fitness, a smaller CR will favor them
being retained in the population at generation G + 1.

Selection. The trial vector u; g4+; will be compared with
the target vector p; ; to determine whether or not it becomes
a member of the population at generation G + 1 according to
the cost function (see equation (16)):

- _Juicn fE@igr) < E(pig).
PiG+1 = DiG otherwise.
We utilized ADE mentioned above to optimize the weights
of the FNN. Although it is very useful in the optimization
problem, there is no proof of convergence of this method.

2D

(22)

4. Approximation accuracy evaluation

To evaluate the measurement accuracy of optical encoders,
different criteria are used. The standard deviation of the error
(STD) criterion, the max absolute error (MaxAbs) criterion and
the mean absolute error (MeanAbs) are defined as follows.

The system accuracy given in the specifications of optical
encoders is usually expressed by the STD. The STD criterion
is given by

M 1/2
STD = [Z (e; — &)%) (M — 1)] ,

i=1

ei =X — zi, (24)

| M
e = MX;&;
=

where £; is the ith output value of an optical encoder (or a
network), and M and z are defined in section 3.
The MaxAbs criterion is given by

MaxAbs = max{|e;|, i=1,2,3,...,M}.

The MeanAbs criterion is given by

(23)

(25)

(26)

M
1
MeanAbs = MZ lei]. (27)

i=1

S. Experimental results

5.1. Device clearance measurement

The clearance measurement is executed to examine the
clearance of the MCD. Firstly, the stepping motor is set to
rotate in the counterclockwise direction with the specified

Table 2. Results of clearance measurement.

Item Angle (deg) Rotation angle (deg/interval)
1 282.56 8.01

2 274.55 8.00

3 266.55 7.99

4 258.56 0

5 266.55 7.99

6 274.55 8.00

7 282.56 8.01

Table 3. Main specifications of optical encoders.

Item En-A En-B
Resolution 19.8" 39.6"

Positions per revolution 65 536 (16 bits) 32 768 (15 bits)
System accuracy 40" 40"

Measurement range 360°

rotation angle. Then the motor rotates in the clockwise
direction with the counterpart specified rotation angle. In this
experiment, we set the specified rotation angle to be 8° per
interval and the measurement results of the MCD rotation
angle are listed in table 2. It is able to conduct the clearance
measurement in the reverse order (first clockwise, and then
anticlockwise). So the clearance of the MCD can be negligible.

5.2. Measurement experiment

Measurement experiments with optical encoders are
performed for the purpose of determining whether or not
optical encoders can reach their claimed accuracy. Optical
encoders En-A and En-B are customized for our laboratory by
research institutes A and B, and some of the main specifications
are shown in table 3. En-A and En-B are mounted on the
MCD introduced in section 2, and we test En-A and En-B
successively.

The measurement procedure involves the rotation angle,
the number of measurement points as well as the rotation
direction. The rotation angle is set to 10° per interval. This
means that the interval between the adjacent outputs of
an optical encoder should be equal to 10° throughout the
measurement process. Thus 36 measurement points should
be collected in the full measurement range. The measurement
experiments were carried out on the same day and the same
location when the stepping motor was set to rotate in the
clockwise direction.

Figure 8(a) indicates that the interval of En-A is not
equal to the specified rotation angle in magnitude, and the
interval curve is a deformed circle shape. So it can be visually
determined that the accuracy of En-A is very low. In figure 9(a),
the interval curve of En-B is an approximate circle. Relatively
speaking, En-B is more accurate than En-A. Absolute error
curves of En-A and En-B are shown in figures 11 and 12,
respectively. Table 4 shows the measuring results in different
evaluation forms. The MaxAbs and MeanAbs of En-A are
3.61° and 1.6844°, respectively. With regard to the STD, En-A
with a specification accuracy of 40” and En-B are less accurate
than their nominal accuracy.
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10°

(0)

Figure 8. Radar chart of the interval: (@) the interval of uncalibrated
En-A, (b) the interval of En-A calibrated by ADE-FNN.

15° 15°

100 100

(a) (b)

Figure 9. Radar chart of the interval: (@) the interval of uncalibrated
En-B, (b) the interval of En-B calibrated by ADE-FNN.

Table 4. Results of measurement.

Item En-A (deg) En-B (deg)
Measured STD  1.0712 0.03
MaxAbs 3.61 0.34
MeanAbs 1.6844 0.2964

5.3. Calibration experiment

In order to improve the accuracy of En-A and En-B, some
calibration experiments are performed. That the repeatability
of optical encoders under consideration is good is shown by
repeating the same measurement experiments over a period
of time. Generally speaking, system errors and random errors
coexist in any measurement, and repeatability error belongs to
the random error in nature [25]. So, an arbitrary and simple
conclusion is that the system errors of En-A and En-B are
greater than random errors and the major reason for their low
accuracy is the system error which includes the quality of the
graduation, the eccentricity of the graduation to the bearings,
the elasticity of the encoder shaft and its coupling with the
drive shaft, etc [26]. The system error can be amended through
calibration [8].

The proposed ADE-FNN has been applied to calibrate En-
A and En-B. The relationship between STD and # is shown
in figure 10. The figure shows that a larger n brings a higher
fitting accuracy, but when #n increases to a certain degree, we
face the risk of overfitting.

Standard Deviation of error(STD)

0 5 10 15 20 25 30 35 40
n

(a) En-A

=
o

©

=
o

Standard Deviation of error{STD)

0 5 10 15 20 25 30
13
(b) En-B
Figure 10. The relationship between the STD error and n.

Table 5. Parameter settings for the ADE-FNN.

Item En-A En-B

T 360 360

G 20 000 20 000

D 41 31
NP 205 155

F 0.53 0.59
CRuin 0 0
CRunax 1 1

Parameter settings for the ADE-FNN are listed in table 5.
Since all optical encoders will not possess exactly the same
error characteristics due to inherent differences in their
manufacture, the ADE-FNN is successively trained on one
error curve. Consequently, there are two different sets of ADE-
FNN weights which are used to compensate the system errors
of En-A and En-B, respectively. The ADE-FNN was tested
with respective test data files comprising 36 resolved angle
values each, which were the data of another group and not
used during the training of the network.

The reduction of the STD of En-A is from 1.0712°
(pre-calibration) to 0.0882° (= 317.52”) (post-calibration).
However, it still does not achieve its nominal accuracy.
The error range of En-B narrows significantly, and its STD
decreases to 0.0076° (= 27.36”). Thus En-B calibrated by the
ADE-FNN is slightly more accurate than its nominal accuracy.
Figures 8(b) and 9(b) show the radar charts of the intervals of
En-A and En-B calibrated by the ADE-FNN, which are more
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Figure 11. Comparison of the absolute error between uncalibrated
and calibrated En-A. Solid line—the absolute error of uncalibrated
En-A, solid line with dots—the absolute error of En-A calibrated by
ADE-FNN.

Figure 12. Comparison of the absolute error between uncalibrated
and calibrated En-B. Solid line—the absolute error of uncalibrated
En-B, solid line with dots—the absolute error of En-B calibrated by
ADE-FNN.

round than before calibration. Figures 11 and 12 show the
absolute error curves of the two optical encoders calibrated
by the ADE-FNN. The closer the curve approaches the circle
marked with O, the smaller the absolute error. The accuracy
of En-A and En-B calibrated by the ADE-FNN has been
improved obviously.

Finally, a comparative study including standard FNN,
BP and LS is conducted to illustrate the effectiveness of
the proposed method and the standard FNN utilizing the LM
algorithm to train data. BP used the standard BP network with
19 nodes (which is the best one either for En-A or En-B) in the
hidden layer and the LM algorithm to train. We used the same
experimental data as the training data, and used the data of
another group, which were not used during the training of the
network, to test the results of compensation. Parameter settings

Table 6. Parameter settings for the FNN and BP.

En-A En-B
Item FNN BP FNN BP
The number of nodes in 41 19 65 19
the hidden layer
Maximum number of epochs 20 000 20000 20000 20 000
Sum-squared error goals 1075 1073 1077 1077

Table 7. Comparative STD, MaxAbs and MeanAbs results of En-A
calibrated by the ADE-FNN, FNN, BP and LS.

Item STD (deg) MeanAbs (deg) MaxAbs (deg)
ADE-FNN  0.0882 0.1694 0.3213
FNN 0.1306 0.1813 0.3909
BP 0.3086 0.1901 1.1804
LS 0.5956 0.4984 1.3419

Table 8. Comparative STD, MaxAbs and MeanAbs results of En-B
calibrated by the ADE-FNN, FNN, BP and LS.

Item STD (deg) MeanAbs (deg) MaxAbs (deg)
ADE-FNN  0.0076 0.0101 0.0206
FNN 0.0104 0.0101 0.0246
BP 0.0185 0.0163 0.0840
LS 0.0222 0.0176 0.0436

for the ADE-FNN are listed in table 5 and parameter settings
for the FNN and BP are listed in table 6. For the ADE-FNN
and the other three methods, the results presented in tables 7
and 8 clearly show that the ADE-FNN is the only effective
calibration method that could improve the accuracy of optical
encoders in terms of the STD criterion, MaxAbs criterion and
MeanAbs criterion. Because there are some random factors in
calculation, the results shown in tables 7 and 8 are the averages
of 100 times numerical calculation.

6. Conclusions

This paper introduces a useful device which is in charge
of measuring and calibrating optical encoders and a novel
modeling method based on the FNN trained by ADE. Then,
this method was carried out to calibrate two optical encoders
for the sake of demonstrating its feasibility and usefulness.

The experimental results show that the ADE-FNN is
superior to the standard FNN, BP and LS methods in
terms of the STD criterion, MaxAbs criterion and MeanAbs
criterion. Besides, the ADE-FNN has the advantages of
strong approximation capability, fast convergence speed,
robustness to initial weights, does not easily fall into local
minimum, simple operations and small network scale. From
our experiments, the ADE-FNN reaffirms its suitability as an
excellent method for the calibration of optical encoders.

The calibration experiments on optical encoders are
implemented on the premise of good repeatability. However,
it is a prerequisite that data filtering is required to reduce the
effect of random error on the experimental data when optical
encoders have unsatisfied repeatability.
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