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Abstract: This study is concerned with stochastic stability of a new extended filtering for non-linear systems subject to
measurement packet losses. The measurements sensored are transmitted to the estimator through a packet-dropping network.
By introducing a time-stamped packet arrival indicator sequence, the measurement loss process is modelled as an independent,
identically distributed (i.i.d.) and therefore a Bernoulli process. The boundedness of estimation error covariance matrices is
proved by showing the existence of a critical threshold for measurement packet arrival probability. It is also shown that,
under appropriate assumptions, the estimation error remains bounded as long as the noise covariance matrices and the initial
estimation error can be ensured small enough. Finally, simulation results validating the effectiveness of this proposed filtering
framework are also presented.
1 Introduction

In recent years, considerable attention has been paid to net-
worked control systems where the communication between
sensors, controllers and actuators is often realised through a
shared network medium [1]. Networked control systems pos-
sess many advantages over the traditional point-to-point con-
trol systems, such as low cost, reduced power requirements,
easy installation, simple maintenance and high reliability [2].
However, transmitting the observed data and control sig-
nals across the network inevitably results in some newly
emerged problems including, but not limited to, random
time-delay, packet loss, quantisation and channel fading,
which render the estimation and control for networked con-
trol systems significantly challenging [3–8]. In particular,
the state estimation problem across a network has gained
recurring research attention in the literature.

Pioneering works on linear estimation with measurement
losses can be traced back to [9–11]. In [9], the packet
loss process was modelled as an independent, identically
distributed (i.i.d.) Bernoulli process and then the linear min-
imum mean-squared error (LMMSE) estimator with filter
iterations similar to the standard Kalman filter by only util-
ising the statistics of packet arrival indicator sequence was
derived. In [10], a sufficient and necessary condition for the
existence of the linear recursive estimator when the packet
loss sequence was not necessarily i.i.d. was established.
Moreover, the condition for the uniformly asymptotic sta-
bility of the LMMSE estimator was developed for linear
systems with measurements corrupted by white multiplica-
tive noise in [11]. It is worth mentioning that in this case
the error covariance matrix is governed by a determin-
istic equation iteration and therefore an equivalent linear
2048
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system without measurement losses can be constructed to
facilitate the asymptotic stability analysis of the LMMSE
estimator.

Since widely application of the clairvoyant Kalman fil-
ter, ranging from tracking, detection to control, Kalman
filtering with intermittent observations has attracted relative
attention in last decade; see [12–14]. In [12], the effects
of packet loss resulted from unreliability of the network
on the stability and performance of Kalman filtering were
investigated for Bernoulli packet loss process. In addition,
inspired by the uncertainty threshold principle, it has also
been shown there exists a critical value for the packet
arrival probability such that the averaged estimation error
covariance matrix will be bounded for any initial condition
if the probability exceeds the critical probability; other-
wise, the averaged estimation error covariance matrix will
diverge for some initial conditions. To capture the possi-
ble transient correlation of network channel variations, the
packet loss process was modelled as a time-homogenous
two-state Markov chain in [13, 14] and sufficient conditions
for the introduced peak covariance stability for general vec-
tor systems were established therein. In cases above, Kalman
filtering with intermittent observations under different packet
loss models is studied by only utilising the time-stamped
packet loss indicator sequence, which renders the estima-
tion error covariance matrix iteration stochastic and therefore
poses significant challenges to its stability analysis. More
recently, however, a suboptimal estimator for linear sys-
tems with Bernoulli packet losses was proposed in [15], by
combining the use of time-stamped measurement innovation
sequence and statistics of the indicator stochastic variable
when designing the filter, to balance the performance and
the stability analysis.
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In the presence of non-linearities and packet losses, a
multitude of publications can be widely found in the lit-
erature; see, for example, [16–23] and references therein.
Among them, an extended minimum-variance filter was
developed for non-linear stochastic systems in [16] and
the recursive finite-horizon filter was proposed for a class
of non-linear time-varying systems subject to multiplica-
tive noises, measurement packet losses and quantisation
effects in [19]. In [20], the distributed H∞ filtering problem
was well investigated for a wide class of non-linear systems
with successive packet losses. Furthermore, the extended
Kalman filtering with intermittent observations (called inter-
mittent extended Kalman filter for short) and unscented
Kalman filtering with intermittent observations (similarly,
called intermittent unscented Kalman filter (IUKF) for short)
have recently been studied in [21–23], respectively. Fol-
lowed the spirit of [24], conditions for guaranteeing stochas-
tic stability of the intermittent extended Kalman filter and the
IUKF are developed, respectively. In addition, it has been
shown in [22, 23] that the existence of a critical value for
packet arrival probability to ensure statistical convergence
of the averaged error covariance matrix.

The present paper, which can be seen as a further comple-
mentary to the prior works mentioned above, is concerned
with the issue of estimating the state of a general non-linear
system, where the state estimate is based on the observed
data provided by an unreliable sensor network. The contri-
butions of this paper include: similarly to the intermittent
extended Kalman filter, we first extend the recently pro-
posed linear suboptimal filter in [15] to non-linear case and
derive a new extended filter (EF). We then generalise the
concept of uniform observability to the case considered in
this paper. Unlike the statistical convergence properties of
averaged error covariance matrices for intermittent extended
Kalman filter, the asymptotic convergence properties of the
error covariance matrices can be derived for the proposed
estimator under appropriate assumptions. Moreover, condi-
tions for guaranteeing stochastic stability of estimation error
of the proposed EF are also established. Specifically, when-
ever the non-linearities are not severe, simulation results
show that the new EF has similar estimation performance
with IUKF in [23] but with easier computations [25].

The remainder of this paper is organised as follows. We
briefly introduce the non-linear system to be considered
in Section 2 and establish the proposed EF in Section 3,
which is followed by our main results on the boundedness
of the error covariance matrices and the stochastic stabil-
ity of the estimation error in Sections 4 and 5, respectively.
A numerical example is presented in Section 6 and finally,
the conclusions are drawn in Section 7.

Throughout this paper, the set of all non-negative inte-
gers is denoted by N ; the Euclidean norm for real vectors
or the spectral norm for real matrices is denoted by ‖ · ‖.
Furthermore, We use P > 0 (≥0) to represent the posi-
tive definite (positive semi-definite) matrix P, use E{x} to
denote the expectation value of x, and use C1 to denote all
the continuously differentiable functions.

2 System description and preliminaries

Consider the following non-linear discrete-time stochastic
system with measurement packet losses

xk+1 = f (xk) + ωk (1)

yk = γkh(xk) + υk (2)
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where k = 0, 1, . . . is the time instant, xk ∈ R
n is the state

vector with the initial state x0, yk ∈ R
p is the measure-

ment vector, and the process noise ωk ∈ R
n, measurement

noise υk ∈ R
p are both zero-mean white Gaussian vec-

tors with covariance matrices E{ωkω
T
j } = Qkδkj, E{υkυ

T
j } =

Rkδkj, respectively, where δkj is the Kronecker delta function.
The initial state x0 is also assumed to be a zero-mean white
Gaussian random vector with covariance matrix E{x0xT

0 } =
P0 > 0. Moreover, the non-linear functions f , h are assumed
to be C1 functions. For clarity, system (1) is considered
autonomous, however, the results presented in this paper can
be readily generalised to the controlled non-linear systems.

The packet arrival indicator variable γk is assumed to
take binary values on 0 and 1. More precisely, γk = 1 rep-
resents that the measurement packet arrives at the remote
estimator; however, γk = 0 indicates that the measurement
packet drops in the network. Moreover, the random process
is characterised by parameter λ with

Pr{γk = 1} = λ (3)

Pr{γk = 0} = 1 − λ (4)

where the packet arrival probability λ ∈ [0, 1] is known, and
the sequence γk , the noise process ωk , υk and the initial state
x0 are assumed to be mutually independent for all k ∈ N .

Before moving on, the following auxiliary lemmas are
introduced.

Lemma 1 [22]: Suppose that UCU T < A holds for matrix
U ∈ R

n×n and symmetric positive definite matrices A, C ∈
R

n×n, then U T A−1U < C−1 holds.

Lemma 2 [22]: For symmetric positive-definite matrices
A, C ∈ R

n×n, (A + C)−1 > A−1 − A−1CA−1 holds.

3 Derivation of the EF

In this section, the EF for general non-linear systems with
measurement packet losses will be constructed. To pro-
ceed, the following assumption on packet arrival indicator
sequence is stated.

Assumption 1: γk is supposed to be time-stamped, that is,
the value of γk at every time instant k can be observed. So
the information γk together with observation yk are available
in the estimator design.

Linearise non-linear functions f and h at points
x̂k|k , x̂k|k−1, respectively.

f (xk) = f (x̂k|k) + Fk(xk − x̂k|k) + ϕ(xk , x̂k|k)

h(xk) = h(x̂k|k−1) + H k(xk − x̂k|k−1) + ψ(xk , x̂k|k−1)

where Fk = ∂f
∂x

∣∣
x̂k|k

and H k = ∂h
∂x

∣∣
x̂k|k−1

, denote the Jacobian
matrices of non-linear functions f , h at points x̂k|k , x̂k|k−1,
respectively. Then the linearised approximation of the orig-
inal non-linear system becomes

xk+1 = Fkxk + ωk + [
f (x̂k|k) − Fk x̂k|k + ϕ(xk , x̂k|k)

]
yk = γkH kxk + υk

+ [
γkh(x̂k|k−1) − γkH k x̂k|k−1 + γkψ(xk , x̂k|k−1)

]
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For the following linear discrete-time stochastic system with
measurement packet losses

xk+1 = Fxk + ωk

yk = γkHxk + υk

where F and H are, respectively, the state transition matrix
and the observation matrix. Then the linear suboptimal filter
developed for the above system in [14] is specified as

x̂k|k = x̂k|k−1 + λPk|k−1H T (λHPk|k−1H T + R)−1

× (yk − γkHx̂k|k−1)

x̂k+1|k = Fx̂k|k

Pk|k = Pk|k−1 − λ2Pk|k−1H T (λHPk|k−1H T + R)−1HPk|k−1

Pk+1|k = FPk|kFT + Q

So, the proposed EF can be stated as follows

x̂k|k = x̂k|k−1 + λPk|k−1H T
k (λH kPk|k−1H T

k + Rk)
−1

× (yk − γkh(x̂k|k−1)) (5)

x̂k+1|k = f (x̂k|k) (6)

Pk|k = Pk|k−1 − λ2Pk|k−1H T
k

× (λH kPk|k−1H T
k + Rk)

−1H kPk|k−1 (7)

Pk+1|k = FkPk|kFT
k + Qk (8)

Remark 1: As pointed out in Section 1, the intermittent
extended Kalman filter iteration is very much involved with
the stochastic packet arrival indicator variable sequence
{γk}∞

0 , so the intermittent extended Kalman filter iteration is
inherently stochastic and therefore can only be determined
online. Moreover, only statistical properties on averaged
estimation error covariance matrices can be derived for
intermittent extended Kalman filter. Note, however that the
EF iteration devised in this paper (see (7)–(8)) is readily
expressed in terms of expectation value of random vari-
able γk , is deterministic and therefore can be determined
offline, which can be viewed as one characteristic prop-
erty of our proposed estimator. Nevertheless, it should be
clearly clarified that the EF in this paper is of worse esti-
mation performance than the intermittent extended Kalman
filter because it makes a tradeoff between the estimation
performance and the offline calculation capability.

4 Boundedness of the estimation error
covariance matrices

The results in the proceeding section show that the estima-
tion error covariance matrices of the discrete-time EF stated
by (5) to (8) remain bounded, if the non-linear system con-
sidered is posited to satisfy appropriate conditions. These
conditions include requirements of boundedness of the sys-
tem parameter matrices and the existence of the invertible
matrix of observable matrix. Before continuing on, a gener-
alised concept in terms of the uniform observability of the
EF is first introduced.

Consider the following linear time-varying system with
missing measurement packet losses

xk+1 = Fkxk + ωk (9)

yk = γkH kxk + υk (10)
2050
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where system parameter matrices Fk , H k depend on the
estimates x̂k|k , x̂k|k−1, respectively, and Bernoulli random
variable γk is time-stamped with E{γk} = λ. Similar to [21],
the concept of uniform observability for linear time-varying
systems can also be extended to systems with measurement
packet losses discussed in this paper.

Definition 1: Let the generalised observability Gramian be
given by

M̌ k+s,k =
k+s∑
i=k

λ�T
i,k(

√
λH i)

T(
√

λH i)�i,k (11)

where the transition matrix �i,k = FiFi+1 · · · Fk with �i,i =
In. Then the matrix pair (Fk , H k) is said to be uniformly
observable if there exist some integer s > 0 and two pos-
itive real constants m, m > 0, such that the generalised
observability Gramian M̌ k+s,k satisfies

0 < mIn ≤ M̌ k+s,k ≤ mIn (12)

for every k ∈ N .

Assumption 2: There exist positive real constants f , h, h, q, q,
r, r, such that the following bounds on system parameter
matrices hold for every k ∈ N

‖Fk‖ ≤ f (13)

h2 ≤ ‖H T
k H k‖ ≤ h

2
(14)

qIn ≤ Qk ≤ qIn (15)

rIp ≤ Rk ≤ rIp (16)

Remark 2: Observe, that if f < 1, the desired bounds for
the error covariance matrices (17) subject to (7)–(8) can be
derived directly from Assumption 2, even for the worst case
λ = 0, that is, the desired bounds are independent of the
measurement process if f < 1.

In the following, the Bernoulli measurement packet loss
process with a non-zero parameter λ will be discussed and
the bounds for the error covariance matrices will be derived.

Theorem 1: Under Assumption 2 and assume that (Fk , H k)
is uniformly observable, that H−1

k exists for every k ∈ N ,
then there exists a critical value for packet arrival probabil-
ity λc = 1 − 1

f
2 such that the error covariance matrices are

bounded provided that λ > λc, that is, there exists a positive
real constant pair p, p, such that

pIn ≤ Pk+1|k+1 ≤ Pk+1|k ≤ pIn (17)

Proof: Since H k is invertible for every k ∈ N , given that
(Fk , H k) is uniformly observable and thereby detectable,
even for λ = 1, the lower bound can be obtained directly
from [26]. Clearly, according to (7)–(8), we have

Pk+1|k = Fk

[
Pk|k−1 − λ2Pk|k−1H T

k

× (
λH kPk|k−1H T

k + Rk

)−1
H kPk|k−1

]
FT

k + Qk
IET Control Theory Appl., 2013, Vol. 7, Iss. 17, pp. 2048–2055
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Setting A = λH kPk|k−1H T
k , C = Rk and using Lemma 2 to

the inverse term above yields

Pk+1|k ≤ (1 − λ)FkPk|k−1FT
k + FkH−1

k RkH−T
k FT

k + Qk

Considering the bounds on matrices H k , Rk , Qk , we have

Pk+1|k ≤ (1 − λ)FkPk|k−1FT
k + r

h2 FkFT
k + qIn

≤ (1 − λ)f
2
Pk|k−1 +

(
rf

2

h2 + q

)
In

Recursively, it follows that

Pk+1|k ≤
[
(1 − λ)f

2
]k

P1|0 +
(

rf
2

h2 + q

)
k−1∑
i=0

[
(1 − λ)f

2
]i

In

≤
{[

(1 − λ)f
2
]k ∥∥P1|0

∥∥ +
(

rf
2

h2 + q

)
k−1∑
i=0

[
(1 − λ)f

2
]i
}

× In (18)

Denote p̃ = max
{∥∥P1|0

∥∥ ,
(

rf
2

h2 + q
)}

and rewrite (18) as
follows

Pk+1|k ≤ p̃
k∑

i=0

[
(1 − λ)f

2
]i

In, ∀k ≥ 0 (19)

It is noteworthy that under the assumption λ > 1 − 1

f
2 , the

sum in (19) converges to p = p̃

1−(1−λ)f
2 and therefore the

upper bound in (17) follows directly from (19). �

Remark 3: It should be noted that, similarly to the intermit-
tent extended Kalman filter for general non-linear systems,
Riccati-like iteration of estimation error covariance Pk|k−1

can be just seen as a first-order approximation to the true
error covariance, which does not generally possess a lin-
ear iteration. Therefore boundedness of error covariances
Pk|k−1, Pk|k do not necessarily imply stochastic stability
of the estimation error ek|k−1. Then study of the behaviour
of the averaged estimation error E{ek|k−1} in Section 5 are of
significant implications.

5 Stochastic stability of the estimation error

In this section, the estimation error resulted from the pro-
posed EF will be shown to be bounded, if some appropriate
assumptions hold.

Assumption 3: There exist positive real constants f , f , h,
q, q, r, r such that the following bounds on system parameter
matrices hold for every k ∈ N

f 2 ≤ ‖FT
k Fk‖ ≤ f

2
(20)

‖H k‖ ≤ h (21)

qIn ≤ Qk ≤ qIn (22)

rIp ≤ Rk ≤ rIp (23)
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Assumption 4: For any positive real constant pair εϕ, εψ,
there exists another positive real constant pair δϕ, δψ such
that the following two inequalities hold for all ‖xk − x̂k|k‖ ≤
δϕ and ‖xk − x̂k|k−1‖ ≤ δψ, respectively

‖ϕ(xk , x̂k|k)‖ ≤ εϕ‖xk − x̂k|k‖2 (24)

‖ψ(xk , x̂k|k−1)‖ ≤ εψ‖xk − x̂k|k−1‖2 (25)

Assumption 5: There exist two positive real constants p, p
such that the error covariances Pk|k−1, Pk|k are bounded,
that is

pIn ≤ ‖Pk|k‖ ≤ ‖Pk|k−1‖ ≤ pIn (26)

Remark 4: Note that Theorem 1 derived explicit condition
for packet arrival probability λ to ensure the boundedness
of estimation error covariance matrices for systems where
H−1

k exists. However, for general time-varying systems no
explicit conditions of λ have been given in the literature.
To lessen this strict requirement, similarly to [22, 23],
we assume the boundedness of estimation error covariance
matrices in Assumption 5.

Lemma 3: Let g(λ) be

g(λ) = (1 + θ)−1[1 + δ(λ − λ2)]
where constants θ > 0, δ > 0. Then there always exists a
set of the form S = (λn, 1] such that g(λ) < 1 holds for all
λ ∈ S.

Proof: Note clearly, that g(λ) < 1 holds at least for both
λ = 1 and 0. However, for λ = 0, the assumption on the
boundedness of the error covariance matrices Pk+1|k+1 and
Pk+1|k can be easily violated except the very case g < 1.
Moreover, g(λ) is continuous over [0, 1] and reaches its
maximum value at point λ = 1/2. From λ = 1/2 to λ =
1, g(λ) decreases. Considering g(1) = (1 + θ)−1 < 1 and the
continuity of g(λ), then there always exists a neighbourhood
of point λ = 1, denoted by S = (λn, 1], in which g(λ) < 1
holds. �

Theorem 2: Consider the non-linear stochastic system
described by (1)–(2) and an EF given by (5)–(8). Under
Assumptions 3–5 and that λ ∈ S, if there exists a real
constant ε > 0, such that E{‖e1|0‖2} ≤ ε, then the state esti-
mation error ek|k−1 as stated in (27) is exponentially bounded
in mean square and bounded with probability one.

Proof: According to Assumption 5, there exists positive real
constants p, p such that pIn ≤ ‖Pk|k‖ ≤ ‖Pk|k−1‖ ≤ pIn.

From (5)–(6), we have the state estimation error
defined by

ek+1|k = xk+1 − x̂k+1|k
= Fk(In − γkK k) ek|k−1 + rk + sk (27)

where, we define rk = ϕk − γkFkK kψk and sk = ωk −
FkK kυk . Define Vk(ek|k−1) = eT

k|k−1P−1
k|k−1ek|k−1, then

Vk+1(ek+1|k) = eT
k+1|kP−1

k+1|kek+1|k

= [
Fk(In − γkFkH k)ek|k−1 + sk + rk

]T

× P−1
k+1|k

[
Fk(I − γkK kH k)ek|k−1 + sk + rk

]
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= eT
k|k−1(In − γkK kH k)

T FT
k P−1

k+1|k
× Fk(I − γkK kH k)ek|k−1

+ sT
k P−1

k+1|k
[
2Fk(In − γkK kH k)ek|k−1 + 2rk

]
+ rT

k P−1
k+1|k

[
2Fk(In − γkK kH k)ek|k−1 + rk

]
+ sT

k P−1
k+1|ksk (28)

For the first term above, it yields

E
{
(Fk − γkFkK kH k)

T P−1
k+1|k(F − γkFkK kH k)

}
= (Fk − λFkK kH k)

T P−1
k+1|k(Fk − λFkK kH k)

+ (λ − λ2)(FkK kH k)
T P−1

k+1|k(FkK kH k)

≤
[

1 + (λ − λ2)pf
2
k

2
h

2

pf 2d2

]

× (In − λK kH k)
T FT

k P−1
k+1|kFk(In − λK kH k) (29)

where we denote by k , d the upper bound on the matrix
norm ‖K k‖ and the lower bound on the matrix norm
‖Dk‖ = ‖In − λK kH k‖, respectively, which are calculated
as follows. Since K k = λPk|k−1H T

k (λH kPk|k−1H T
k + Rk)

−1

and (20)–(23), considering λH kPk|k−1H T
k ≥ 0, it easily fol-

lows that

‖K k‖ ≤ λph

r
≤ ph

r
� k (30)

Meanwhile, d can be determined in the following. In (7), it
states that

(In − λK kH k)Pk|k−1

= Pk|k−1 − λ2Pk|k−1H T
k (λH kPk|k−1H T

k + Rk)
−1H kPk|k−1

= (1 − λ)Pk|k−1 + λ
[
Pk|k−1 − Pk|k−1(

√
λH k)

T

×
(√

λH kPk|k−1

√
λH T

k + Rk

)−1

(
√

λH k)Pk|k−1

]
(31)

then using the matrix inversion lemma [27] to the second
term in last equation yields

Pk|k = (In − λK kH k)Pk|k−1

= (1 − λ)Pk|k−1 + λ
(
P−1

k|k−1 + λH T
k R−1

k H k

)−1
(32)

Owing to the positive definiteness, therefore the invertibility
of covariance matrices Pk|k , Pk|k−1, it can be obtained that

In − λK kH k

=
[
(1 − λ)Pk|k−1 + λ

(
P−1

k|k−1 + λH T
k R−1

k H k

)−1
]

P−1
k|k−1

where, Pk|k−1 > 0, (P−1
k|k−1 + λH T

k R−1
k H k)

−1 > 0, so [(1 − λ)

Pk|k−1 + λ(P−1
k|k−1 + λH T

k R−1
k H k)

−1] > 0, P−1
k|k−1 > 0. Accord-

ing to matrix theory on eigenvalue and singular value
estimates of product of two positive-definite matrices; see
2052
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[28, Theorem 3.1], it yields

‖In − λK kH k‖
=

∥∥∥[
(1 − λ)Pk|k−1 + λ

(
P−1

k|k−1 + λH T
k R−1

k H k

)−1
]

P−1
k|k−1

∥∥∥
≥ p

p

⎛
⎝1 − λ + λr

r + λh
2
p

⎞
⎠ ≥ pr

p(r + h
2
p)

� d (33)

On the other hand, from (8), it follows

Pk+1|k = FkPk|kFT
k + Qk ≥

(
1 + q

pf
2

)
FkPk|kFT

k

and now substituting the last equation into (7) yields

Pk+1|k ≥
(

1 + q

pf
2

) [
FkPk|k−1FT

k − λ2FkPk|k−1H T
k

×(λH kPk|k−1H T
k + Rk)

−1H kPk|k−1FT
k

]
≥

(
1 + q

pf
2

) [
(Fk − λFkK kH k)Pk|k−1

× (Fk − λFkK kH k)
T + (λ − λ2)FkK kH kPk|k−1

× (FkK kH k)
T + FkK kRk(FkK k)

T
]

≥
(

1 + q

pf
2

)
(Fk − λFkK kH k)Pk|k−1

× (Fk − λFkK kH k)
T (34)

where, similarly, (λ − λ2)FkK kH kPk|k−1(FkK kH k)
T + Fk

K kRk(FkK k)
T ≥ 0. Set A = Pk+1|k , U = Fk − λFkK kH k ,

C =
(

1 + q

pf
2

)
Pk|k−1 in (34) and use Lemma 1 to show that

the following inequality holds

(Fk − λFkK kH k)
T P−1

k+1|k (Fk − λFkK kH k)

<

(
1 + q

pf
2

)−1

P−1
k|k−1 (35)

Combining (29) and (35) yields

E
{
(Fk − γkFkK kH k)

T P−1
k+1|k(F − γkFkK kH k)

}
≤

[
1 + (λ − λ2)pf

2
k

2
h

2

pf 2d2

]

× (Fk − λFkK kH k)
T P−1

k+1|k(Fk − λFkK kH k)

<

(
1 + q

pf
2

)−1
[

1 + (λ − λ2)pf
2
k

2
h

2

pf 2d2

]
P−1

k|k−1

In Lemma 3, by letting θ = q

pf
2 > 0, δ = pf

2
k

2
h

2

pf 2d2 > 0, it fol-

lows g(λ) < 1 for all λ ∈ S. Hence, there exists a real
number 0 < α < 1, such that g(λ) = 1 − α holds for λ ∈ S.
Therefore we can derive

E
{
(Fk − γkFkK kH k)

T P−1
k+1|k(Fk − γkFkK kH k)

}
< (1 − α)P−1

k|k−1 (36)

Note, also that the expectation value of the second
term E{sT

k P−1
k+1|k × [2Fk(In − γkK kH k)ek|k−1 + 2rk ]} in (28)
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becomes zero owing to zero-mean Gaussian noises ωk , υk

in the term sk and mutual uncorrelation between the noises
and the sequence γk .

The last two terms in (28), that is, rT
k P−1

k+1|k [2Fk(In −
γkK kH k)ek|k−1 + rk ] and sT

k P−1
k+1|ksk can be shown to

be bounded in mean square sense as follows. Since
‖γk‖ ≤ 1, then

‖rk‖ = ‖ϕk − γkFkK kψk‖ ≤ ‖ϕk‖ + ‖γkFkK kψk‖

≤
(

εϕ + f ph

r
εψ

) ∥∥xk − x̂k|k−1

∥∥2

holds for ‖xk − x̂k|k−1‖ ≤ δψ, that is, with ε ′ =
(
εϕ + f ph

r
εψ

)

‖rk‖ ≤ ε ′‖xk − x̂k|k−1‖2

Then for ‖xk − x̂k|k−1‖ ≤ δψ, it follows that

rT
k P−1

k+1|k [2Fk(In − γkK kH k)ek|k−1 + rk ] ≤ ε ′‖xk − x̂k|k−1‖2 1

p

×
[
2f

(
1 + ph

2

r

) ∥∥xk − x̂k|k−1

∥∥ + ε ′δψ

∥∥xk − x̂k|k−1

∥∥]
(37)

By letting ρ = ε ′ 1
p

[
2f

(
1 + ph

2

r

)
+ ε ′δψ

]
, (37) reduces to

rT
k P−1

k+1|k
[
2Fk(In − γkK kH k)ek|k−1 + rk

] ≤ ρ
∥∥xk − x̂k|k−1

∥∥3

The second term sT
k P−1

k+1|ksk has been shown bounded in
Lemma 3.3 in [24], that is, E{sT

k P−1
k+1|ksk} ≤ 
. Then tak-

ing the expectation value from both sides for the two terms
above yields

E
{
rT

k P−1
k+1|k

[
2Fk(In − γkK kH k)ek|k−1 + rk

] + sT
k P−1

k+1|ksk

}
≤ ρE

{∥∥ek|k−1

∥∥3
}

+ 
 (38)

Then from (36) and (38) above, it can be readily obtained
that

E
{
Vk+1(ek+1|k)

}
< (1 − α)E

{
Vk(ek|k−1)

}
+ ρE

{‖ek|k−1‖3
} + 


for two real constants ρ, 
 > 0 depending on parameters
δϕ, δψ, εϕ, εψ and the bounds of system parameter matrices
as stated in (20)–(23). Then it is readily safe to draw the
conclusion. �

Combing the results in Theorems 1 and 2, the following
corollary can be readily stated.

Corollary 1: Consider the non-linear stochastic system
described by (1)–(2) and an EF given by (5)–(8). Under
Assumption 3–4 and assumption that H−1

k exists for every
k ∈ N , that (Fk , H k) is uniformly observable, and that
max{λc, λn} < λ ≤ 1, if there exists a real constant ε > 0,
such that E{‖e1|0‖2} ≤ ε, then the state estimation error
ek|k−1 as stated in (27) is exponentially bounded in mean
square and bounded with probability one.
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Remark 5: Since the assumptions stated above satisfy those
in Theorem 1, then based on Theorem 1, it can be concluded
that there exist two positive real constants p, p, such that
pIn ≤ Pk+1|k+1 ≤ Pk+1|k ≤ pIn. The remaining proof follows
from that of Theorem 2.

Remark 6: Clearly, this work can be viewed as a direct
extension of that in [14] to the non-linear case and besides
the basic idea of linearisation of the non-linear function, the
novelties in the method also lie in that: (i) the covariance
matrix iteration can be computed offline; (ii) the uniform
observability can be quite different than the cases consid-
ered in the literature and therefore, the concept of uniform
observability is largely modified; and (iii) comparing with
that of the intermittent extended Kalman filter in [22], the
stability analysis in this paper becomes much more compli-
cated since the stochastic variable in [22] can be absorbed
into the observation matrix and this reduces and simplifies
the stability analysis of intermittent extended Kalman filter
to that of the extended Kalman filter in [24].

6 Illustrative example

Consider the non-linear discrete-time system [23, 24]

[
x1,k+1

x2,k+1

]
=

[
x1,k + τx2,k

x2,k + τ
[−x1,k + (x2

1,k + x2
2,k − 1)

]] + ωk

(39)

yk = γkx1,k + υk (40)

where τ = 10−3 and E{γk} = 0.14. The covariances of
ωk and υk are Qk = 0.0032I2 and Rk = 0.0012, respec-
tively. The initial conditions are x1,0 = 0.8, x2,0 = 0.2, x̂1,0 =
2.3, x̂2,0 = 2.2 with P0 = I2. The simulation results were pre-
sented to compare the performance of the proposed EF and
the IUKF in [23] in Figs. 1–2. For a fair comparison, we
make a Monte Carlo test based on 50 independent samples
and we use the root-mean-squared error (RMSE) of the sec-
ond state component x2,k . Besides the RMS time histories of
the error metrics, another important evaluation metric is the
required computation time of each filter. The mean com-
putation times per filtering method (for the Monte Carlo
test) run in Matlab 2011b on a 3.3-GHz, two-core Windows
workstation are presented in Table 1. Our results show the
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Table 1 Performance metrics for the filters

Terminal Mean computation
Filter RMSE time (s)

EF 0.535 17.9943
IUKF 0.535 48.4534

effectiveness of this new filtering framework and also indi-
cate that the EF has similar estimation performance with the
IUKF; see Fig. 2. However, the IUKF had much longer time
(almost three times) than the proposed filter. Therefore the
computational overhead of the IUKF and the simplicity of
the Jacobian matrix calculations make the proposed EF a
better choice for this example.

7 Conclusions

In this paper, the problem of state estimation of non-linear
systems with Bernoulli measurement packet losses has been
studied by extending the recently proposed suboptimal esti-
mator in [14] to the non-linear case. By generalising the
concept of uniform observability, it has been shown that,
for certain classes of non-linear systems, there exists a crit-
ical value for packet loss rate such that the estimation error
covariance matrices are bounded for any initial condition.
Furthermore, the behaviour of estimation error has also been
investigated and certain conditions for ensuring stochastic
stability have been established. Finally, comparative simu-
lations have been conducted to indicate that the EF in this
paper is a better choice for this numerical example.

Further research topics include the extension of the pro-
posed filtering method for more general non-linear systems
with network-induced phenomena (random sensor delays,
quantisation effects, missing measurements) in [18, 19].
Also, it could be of great interest to apply this filtering
method to cope with the fault estimation problems discussed
in [8, 17].
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