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Abstract
In this paper a systematic observer-based multiple-model adaptive controller design method is proposed for Lipschitz nonlinear systems. By introducing

a compensator in the observer-based controller, the uncertainty due to the estimation error is decreased and the steady-state response is improved

significantly. In order to deal with the uncertainty of system dynamics, a multiple-model switching scheme is introduced to improve the transient perfor-

mance. A state-dependent dwell-time-based switching logic is used to ensure the asymptotic stability as it can cancel the possible increase of Lyapunov

function in each switching. A simulation result is given to demonstrate the effectiveness of the proposed method.

Keywords
Adaptive control, nonlinear systems, nonlinear observer, multiple model, switching

Introduction

Adaptive control has been studied for some decades and a lot

of literature can be found in this area. It can achieve good

performance in time-invariant systems, linear or nonlinear

(Astrom and Wittenmark, 1995; Krsti’c et al., 1995). It is well

accepted that when the uncertainty is small, classical adaptive

control can provide satisfactory closed-loop performance.

However, classical adaptive control has some basic limita-

tions, which may fail to ensure performance (Anderson and

Dehghani, 2008), such as a large uncertainty due to varying

operating conditions or unexpected changes in system

dynamics.
Numerous efforts have been made in recent years to deal

with control problems with large uncertainty. One example,

involving multiple models, was reported in the 1990s.

Generally, the multiple-model adaptive control (MMAC)

scheme includes N parallel candidate models, a supervisor

and a set of controllers. The concept of MMAC (Anderson et

al., 2001a; Hespanha et al., 2001) is that there is an unknown

plant P which belongs to a set P, usually not a finite set. A

set of controllers fC1,C2, . . .g is available and assumed to

have the property that each plant in the setP will be satisfac-

torily controlled by at least one of the controllers Ci. The

supervisor decides which controller can be applied on the

plant. For the working principle of MMAC (Anderson et al.,

2001a; Hespanha et al., 2001), the plant has an output y

according to the input u, while the candidate plant Ii has an

output ŷi. The disparity between y and ŷi can help to make

the decision which candidate plant is nearest to the real plant

and then the corresponding controller is applied on the plant.
The idea of using multiple models in control has existed

for a long time. The multiple Kalman filter was first

introduced, in Athans et al. (1977), to improve the accuracy

of the state estimate in control problems. Later, switching

was combined with multiple models. The first example of

using switching and tuning in multiple models for adaptive

control was introduced in Narendra and Balakrishnan (1992)

and was further studied by the same authors in 1994 and

1997. In Narendra and Balakrishnan (1994), the basic stabi-

lity analysis for using multiple models for linear time-

invariant systems was given for both fixed and adaptive mod-

els, and laid the foundations of this area. In Anderson et al.

(2001a), the analysis of choosing the candidate model set and

the corresponding controller set was given, and the stability

analysis based on the scale-independent switching logic was

proposed in Hespanha et al. (2001). In addition, the noise,

disturbance and unmodelled dynamics were considered in

both cases whether P was finite or infinite. In order to avoid

instability due to the sudden change from one controller to

another, some constraints on the switching logic were put for-

ward in Anderson et al. (2001b). In Fekri et al. (2004a,

2004b) and Kuipers and Ioannou (2010), the mixed-m synth-

esis design was used to improve the robustness of the system.

Another breakpoint here was smooth switching logic, where a

combination of controllers is used instead of a single control-

ler, to avoid the chattering that results from the sudden

change of controller. In Narendra and Han (2011) and Han

and Narendra (2012) a new concept regarding MMAC was
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introduced, called ‘second level adaptation’. This new

approach provides an estimate which depends on the collec-

tive output of all the models, and the plant can be viewed as a

time-varying convex combination of the estimates. It was

proved that controllers designed based on this scheme can

result in stable closed-loop systems.
Until now, the literature about MMAC has mainly

focussed on linear systems, with few contributions about non-

linear systems. In Narendra and George (2002), an analysis

of using multiple models to improve the transient perfor-

mance of nonlinear systems based on switching and tuning

was presented. In Ye (2008), a parametric-strict-feedback sys-

tem was considered, and a design method for candidate mod-

els was proposed. It was proved that the switching stopped in

finite time, which could sustain the stability.
Unfortunately, in the above literature all the system’s

states are assumed to be available, which is not always true in

real systems. In this paper, an observer-based multiple-model

adaptive control method is proposed for Lipschitz nonlinear

systems. An adaptive observer is designed to estimate the

unmeasurable states of the system. A compensator is intro-

duced in the observer-based controller to decrease the effect

of the uncertainty due to the estimation error. In order to

deal with the uncertainty of system dynamics, a multiple-

model switching scheme is introduced to improve the transi-

ent performance. The asymptotical stability is guaranteed by

the state-dependent dwell-time switching logic.
In the remainder of this paper more details about the pro-

posed MMAC design methodology are presented. After for-

mulating the control problem in Section 2, the single model

controller design based on the observer and compensator is

presented in Section 3. In Section 4 the state-dependent dwell-

time-based multiple-model switching logic is presented. A

simulation example is given in Section 5, and finally the paper

is concluded in Section 6.

Problem formulation

Consider the following nonlinear system

S :
_x(t)= f (x(t))+ bF(x(t))u+ g(x(t))u(t)
y(t)=Cx(t)

�
ð1Þ

where x 2 Rn31, u 2 R and y 2 R are the system state, input

and output, respectively. f (x) 2 Rn31,F(x) 2 R13m and

g(x) 2 Rn31 are known functions. b 2 Rn31,C 2 R13n are

known parameters and u 2 Rm31 is the unknown parameter.
Some assumptions about the system are made as follows:

� A.1 when the states of the system are available and the

parameter u is known, there exists a bounded control-

ler k u=a(x(t), u) k < x, a positive function �V1 and

k1( k x(t) k ) 2 K such that

_�V 1 =
∂�V 1

∂x
(f (x(t))+ bF(x(t))u+ g(x(t))a(x(t), u))

\ � x1k1( k x(t) k )
ð2Þ

i:e: �V1 is a Lyapunov function for system S, which
regulates the output of system S to 0.

� A.2 f (x(t)) 2 C1, F(x(t)), g(x(t)) are locally Lipschitz

and satisfy

k f (x1(t))� f (x2(t)) k< g0 k x1(t)� x2(t) k
k F(x1(t))� F(x2(t)) k< g1 k x1(t)� x2(t) k
k g(x1)(t)� g(x2)(t) k< g2 k x1(t)� x2(t) k

� A.3 there exists a positive definite matrix P 2 Rn3n

such that (Cho and Rajamani, 1997)

bT P=C1 ð3Þ

where each row of C1 lies in span of rows of C, i.e.
there exist a matrix H such that C1 =HC.

� A.4 the vector of unknown parameter u is bounded in

the sense

k u k < g3 ð4Þ

Remark 1. For A.1, the methodology of state feedback con-

troller design when the system states are available has been

thoroughly explored in recent years, and we do not pay much

attention to this problem here. More details can be found in

Krsti’c et al. (1995) and Khalil (1995).
The main purpose of this paper is to design an observer-

based multiple-model adaptive output feedback controller to

improve the performance of system S.

Single model adaptive controller design

Research on nonlinear adaptive observer design has resulted

in great improvements in recent decades (Besancxon, 2000).
The commonly used observer for the system in equation (1) is

of the following form

_̂x(t)= f (x̂(t))+ bF(x̂(t))û(t)+ g(x̂(t))u(t)+L(Cx̂(t)� y(t))

ð5Þ

Define ~x(t)= x̂(t)� x(t) and ~u(t)= û(t)� u, and the error sys-

tem is

_~x(t)= f (x̂(t))� f (x(t))+ bF(x̂(t))û(t)� bF(x(t))u

+ g(x̂(t))u(t)� g(x(t))u(t)+L(Cx̂(t)� y(t))
ð6Þ

If the system is linear, the observer-based controller design is

very simple because of the separation principle (Brezinski,

2002), which ensures that the observer design and controller

design can be considered separately. However, the separation

principle does not hold in nonlinear systems (Kokotovic and

Arcak, 2001). So, the observer and controller should be

designed together. By combining equations (1), (5) and (6),

the following augmented system can be obtained
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Sa :

_Z(t)=
f (x(t))+ bF(x(t))u+ g(x(t))u(t)

f (x̂(t))+ bF(x̂(t))û(t)+ g(x̂(t))u(t)+L(Cx̂(t)� y(t))

� �

Y (t)=
Cx(t)
Cx̂(t)

� �

u(t)=a(x̂(t), û(t))+b(x̂(t), û(t))

8>>>><
>>>>:

_

ð7Þ

where Z(t)=
x(t)
x̂(t)

� �
and Y (t)=

y(t)
ŷ(t)

� �
:

As for the stability of the system in equation (7), we have
the following theorem.

Theorem 1. Consider the augmented nonlinear system in
equation (7) and the assumptions A.1–A.4. If the following

conditions hold:

� there exists a positive definite matrix P and a matrix L

such that

AT P+PA+(g +g1g3 k b k + g2x)I

+(g +g1g3 k b k +g2x)PP+CT LT P+PLC \ 0

ð8Þ

with A= f 9(0) and g is a positive parameter to be
designed
� the parameter update law is

_~u(t)= � F(x̂(t))T bT P~x(t)= � F(x̂(t))T C1~x(t)

= � F(x̂(t))T H~y(t)
ð9Þ

� the compensator is

b(x̂(t), û(t))=� ∂V1

∂x̂(t)
g(x̂(t)Þ

� �� �T
∂V1

∂x̂(t)
g(x̂(t)))

� ��1

3

∂V1

∂x̂(t)
g(x̂(t))

� �T

3
∂V1

∂x̂(t)
3L(Cx̂(t)� y(t))

ð10Þ

then all the signals are bounded. The states of the system,
equation (5), and the estimation error tend to the attractive
zone f(x(t), x̂(t),~x(t))j k x(t) k \ k, k x̂(t) k \ k,~x(t)= 0g
asymptotically, where k is a designed parameter.

Proof: Consider the Lyapunov function candidate
Vo =~xT (t)P~x(t)+ ~uT (t)~u(t) for the observer and V =V1 +Vo

for the system in equation (7). Under assumption A.1, we
have

_V = _V 1 + _V o

=
∂V1

∂x̂
(f (x̂(t))+ bF(x̂(t))û(t)+ g(x̂(t))u+ L(Cx̂(t)� y(t)))+ _V o

\�x1k1( k x̂(t) k )+ ∂V1

∂x̂
g(x̂(t))b(x̂(t), û(t))+

∂V1

∂x̂
L(Cx̂(t)� y(t))+ _V o

ð11Þ

where V1 has the same form as �V1, but x̂ is used instead of x.
First, the gain matrix L and parameter update law can be

designed based on _Vo as in Cho and Rajamani (1997)

_V o = _~x
T
(t)P~x(t)+~xT (t)P _~x(t)+ 2~u(t) _~u(t)

= (f (x̂(t))� f (x(t))+ bF(x̂(t))û(t)� bF(x(t))u

+ g(x̂(t))u(t)� g(x(t))u(t)

+L(Cx̂(t)� y(t)))T P~x(t)+~xT (t)P(f (x̂(t))� f (x(t))

+ bF(x̂(t))û(t)� bF(x(t))u

+ g(x̂(t))u(t)� g(x(t))u(t)+ L(Cx̂(t)� y(t)))+ 2~u
T
(t) _~u(t)

= (f (x̂(t))� f (x(t)))T P~x(t)+~xT (t)P(f (x̂(t))

� f (x(t)))+ (bF(x̂(t))u� bF(x(t))u)T P~x(t)

+~xT (t)P(bF(x̂(t))u� bF(x(t))u)+ (g(x̂(t))u(t)

�g(x(t))u(t))T P~x(t)

+~xT (t)P(g(x̂(t))u(t)� g(x(t))u(t))

+ (L(Cx̂(t)� y(t)))T P~x(t)+~xT (t)P(L(Cx̂(t)� y(t)))

+ (bF(x̂(t))~u(t))T P~x(t)+~xT (t)P(bF(x̂(t))~u(t))+ 2~u
T
(t) _~u(t)

ð12Þ

As f 2 C1 is locally Lipschitz, then it is possible to get the

Taylor series of f (x)= f (0)+ f 9(0)x+ o( k x k ). And therefore

(f (x̂(t))� f (x(t)))T P~x(t)+~xT (t)P(f (x̂(t))� f (x(t)))

= (A~x(t)+ o( k x̂(t) k )� o( k x(t) k ))T P~x(t)+~xT (t)P(A~x(t)

+ o( k x̂(t) k )� o( k x(t) k ))
< ~xT (t)(AT P+PA)~x(t)+g k ~x(t) k � k P~x(t) k
+g k ~xT (t)P k � k ~x(t) k
=~xT (t)(AT P+PA)~x(t)+g � 2 k ~x(t) k � k P~x(t) k
< ~xT (t)(AT P+PA)~x(t)+g(~xT (t)~x(t)+~xT (t)PP~x(t))

=~xT (t)(AT P+PA+gI +gPP)~x(t)

ð13Þ

(bF(x̂(t))u� bF(x(t))u)T P~x(t)+~xT (t)P(bF(x̂(t))u� bF(x(t))u)

< k (bF(x̂(t))u� bF(x(t))u)T k � k P~x(t) k
+ k P~x(t) k � k (bF(x̂(t))u� bF(x(t))u) k
< 2� k b k � k F(x̂(t))� F(x(t)) k � k u k � k P~x(t) k
< 2� k b k � k u k �g1 k ~x(t) k � k P~x(t) k
< g1 k b kk u k (~xT (t)~x(t)+~xT (t)PP~x(t))

< g1g3 k b k ~xT (t)(I +PP)~x(t)

ð14Þ

In the same way

(g(x̂(t))u(t)�g(x(t))u(t))T P~x(t)+~xT (t)P(g(x̂(t))u(t)

�g(x(t))u(t))< g2x~xT (t)(I +PP)~x(t)
ð15Þ

Therefore

_V o <~xT (t)(AT P+PA+(g +g1g3 k b k +g2x)I

+(g +g1g3 k b k +g2a)PP+CT LT P+PLC)~x(t)

+ (bF(x̂(t))~u(t))
T

P~x(t)+~xT (t)P(bF(x̂(t))~u(t))+ 2~u
T
(t) _~u(t)

ð16Þ
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If the parameter update law is chosen as equation (9) and the

matrix inequality in equation (8) is satisfied, then there exists
a sufficient small positive definite matrix Q such that

_Vo \ � ~xT (t)Q~x(t) ð17Þ

Then

_V \ � x1k1( k x̂(t) k )+ ∂V1

∂x̂(t)
g(x̂(t))b(x̂(t), û(t))

+
∂V1

∂x̂(t)
L(Cx̂(t)� y(t))� ~xT (t)Q~x(t)

ð18Þ

If the compensator b(x̂(t), û(t))= 0, the effect of L(Cx̂(t)�
y(t)) cannot be eliminated, which sometimes degrades the sys-
tem’s performance. What we should do is reduce the effect of
L(Cx̂(t)� y(t)) as much as possible. That is, the compensator

b(x̂(t), û(t)) is designed to minimize k ∂V1

∂x̂(t) g(x̂(t))b(x̂(t),
û(t))+ ∂V1

∂x̂(t) L(Cx̂(t)� y(t)) k . Denote

r = k ∂V1

∂x̂(t)
g(x̂(t))b(x̂(t), û(t))+

∂V1

∂x̂(t)
L(Cx̂(t)� y(t)) k ð19Þ

and the optimum b is given by

b(x̂(t), û(t))=� ∂V1

∂x̂(t)
g(x̂(t)Þ

� �� �T
∂V1

∂x̂(t)
g(x̂(t)))

� ��1

3
∂V1

∂x̂(t)
g(x̂(t))

� �T

3
∂V1

∂x̂(t)
3L(Cx̂(t)� y(t))

ð20Þ

Under this condition, k ∂V1

∂x̂(t) g(x̂(t))b(x̂(t), û(t))+
∂V1

∂x̂(t)
L(Cx̂(t)� y(t)) k reaches its minimum value denoted as

x2. Therefore

_V \ � x1k1( k x̂(t) k )� ~xT (t)Q~x(t)+x2 ð21Þ

Solving the following equation and using the property
k1( k x̂ k ) 2 K , it follows that when k x̂ k . k, _V \ � ~xT Q~x,
where k is a scalar and satisfies

� x1k1(k)+x2 = 0 ð22Þ

Using the Lyapunov stability theory (Khalil, 1995) it is clear

that x, x̂,~x, u, ~u are bounded and the attractive zone
f(x, x̂,~x)j k x k \ k, k x̂ k \ k,~x= 0g is asymptotically
stable.

Remark 2. According to the equivalence of matrix norms, the
norm used in this paper is k A k =max(jaijj) if A is a matrix
and k B k =

ffiffiffiffiffiffiffiffiffi
BT B
p

if B is a vector.

Remark 3. For the parameter g, it can be easily obtained by
k o( k x̂ k )� o( k x k ) k � k A~x k < k f (x̂)� f (x) k = k A~x
+ o( k x̂ k )� o( k x k ) k < g0 k ~x k and k o( k x̂ k )�
o( k x k ) k < g0 k ~x k + k A kk ~x k.

Remark 4. For the matrix inequality in equation (8), the inte-
rior point method can be applied to obtain a feasible solu-

tion. For more details about the method of dealing with the

inequality constraint bT P=C1, please refer to Cho and

Rajamani (1997).

Remark 5. Further, as in Cho and Rajamani (1997),Ð ‘

0
_~xdt= limt!‘ ~x(t)� ~x(0). In addition, it follows from equa-

tion (6) that _~x is bounded. Then it follows from Barbalat’s

lemma that _~x! 0 and bF(x)u� bF(x̂)û! 0. If 9z0, z1, d . 0

such that the PE condition in equation (23) holds for all t0,

there is ~u! 0

z0I <

ðt0 + d

t0

bF(x(t))F(x(t))T bT dt < z1I ð23Þ

Multiple model design and analysis

The general nonlinear multiple-model adaptive control meth-

odology contains three parts: N parallel candidate models�
IN
j= 1

	
, a set of nonlinear parameterized controllers

fu(x̂(t)), ûj(t))g and a dwell-time switching scheme determin-

ing which candidate model and corresponding controller

should be applied on the plant. Here, two cases of a multiple-

model scheme are considered:

(a) all the candidate models are adaptive
(b) N21 candidate models are fixed and one candidate
model is adaptive.

Now consider the design of the controller and candidate

models in both cases:

Case a: When the models are all adaptive, the ith model has

the following form

Ii :

_̂xi(t)= f (x̂i(t))+ bF(x̂i(t))ûi(t)+ g(x̂i(t))u(t)+L~yi(t)
ŷi(t)=Cx̂i(t)
ui(t)=a(x̂i(t), ûi(t))+b(x̂i(t), ûi(t))

8<
:

ð24Þ

where ~yi(t)=Cx̂i(t)� y(t). Using the same analysis method in

Section 3, the gain matrix L and compensator b(x̂i(t), ûi(t)) will

be easily obtained, which are the same as equation (7).

Case b: When N � 1 models are fixed and one model is adap-

tive, the fixed models have the same form as equation (24). As

the parameter is fixed, the update law is no longer necessary

while the gain matrix L and compensator b(x̂(t), ûi(t)) are the

same as the system in equation (7), which can be tested easily.
As for the switching scheme, it monitors a function for

each candidate model and determines online which candidate

model and controller should be applied on the plant. Denote

the candidate error

ei(t)= yi(t)� y(t) ð25Þ

where yi is the output of the ith candidate model and y is the

output of the real system. A rational performance index is
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JIi
=p1ei(t)

2 +p2

ðt

0

ei(t)
2dt,p1,p2 . 0

i= 1, 2, � � � ,N

ð26Þ

which takes both the instantaneous and long-term candidate

error into consideration. It was proved by Narendra and

Balakrishnan (1994, 1997) and Narendra and George (2002)

that this performance index leads to improved transient

performance.
It is well known that stability is a key problem and must

be considered in the switching scheme. The switching scheme

and stability analysis is as follows:
Initialization: Choose a controller randomly and apply it on

the plant, set Ic.

Switching scheme: Suppose the last switch occurs at t1.

Then for t . t1, if t � t1 . tD, where tD is the dwell-time which

will be determined later, and min1 < i < N JIi
< JIc

, then set

Ii� = arg min1 < i < N JIi
(t) and Ic = Ii� .

Theorem 2. Suppose that the nonlinear multiple-model adap-

tive control scheme is proposed above. Then for any initial

conditions, all signals in the system are bounded and the

attractive zone f(x,~x)j k x k \ k,~x= 0g is asymptotically

stable.

Proof: The proof is presented separately for the two cases

described earlier.
Case a (all adaptive models):

Suppose the jth candidate model is active and the control-

ler uj is applied on the plant, then consider the performance

of the ith model.
Choose the following Lyapunov functions

Vi =V1i +~xi
T (t)P~xi(t)+ ~ui

T
(t)~ui(t) ð27Þ

where V1i has the same form as equation (2) with the ith mod-

el’s corresponding controller ui(t), and

Vi�j =V1, i�j +~xT
i (t)P~xi(t)+ ~uT

i (t)
~ui(t) ð28Þ

with the jth model’s corresponding controller uj(t). Then

_V i�j =
∂V1, i�j

∂x̂i

(f (x̂i(t))+ bF(x̂i(t))ûi(t)+ g(x̂i(t))uj(t)

+ L(Cx̂i(t)� y(t)))+ 2~xT
i (t)P

_~xi(t)+ 2~uT
i (t)

_~ui(t)

=
∂V1, i�j

∂x̂i

(f (x̂i(t))+ bF(x̂i(t))ûi(t)+ g(x̂i(t))ui(t)

+ L(Cx̂i(t)� y(t)))

+ 2~xT
i (t)P

_~xi(t)+ 2~uT
i (t)

_~ui(t)+
∂V1, i�j

∂x̂i

g(x̂i(t))uj(t)

� ∂V1, i�j

∂x̂i

g(x̂i(t))ui(t)

= _V i +
∂V1, i�j

∂x̂i

g(x̂i(t))uj(t)�
∂V1, i�j

∂x̂i

g(x̂i(t))ui(t)

ð29Þ

As all the signals of the single model are bounded, it follows

that

_Vi�j \ � a1k1( k xi k )+x2 � ~xT (t)Q~x(t)+xi�j ð30Þ

where xi�j is a positive constant which satisfies

k ∂V1, i�j

∂x̂i

g(x̂i(t))uj(t)�
∂V1, i�j

∂x̂i

g(x̂i(t))ui(t) k \ xi�j ð31Þ

From this equation it follows that when the jth model is active

and the controller uj is applied on the ith model, the estima-

tion error and control error are decreasing or the increase is

at least bounded. When the controller switches back to i, the

estimation error and control error will decrease to a certain

small bound region. Then by carefully designing the dwell-

time, the increase can be cancelled.
Set S = ft1, t2, � � �g, where ti is the time when the switching

occurs and TD = ftD1, tD2, tD3, � � �g, where tDi is the dwell-

time for the ith switch. Suppose that controller ui is switched

into the system at time tk while tk� is the last time that ui was

switched into the system. Set the dwell-time as tDk . In order

to cancel the increase, it has to satisfy

ðtk + tDk

tk�

_Vi dt+ x�3(k � k�)\ 0 ð32Þ

here x�= maxfxi�j, j= 1, 2, � � � ,Ng
Further

x�3(k � k�)\
ðtk + tDk

tk�
kx( k x̂(t) k )dt ð33Þ

By solving equation (33) the dwell-time tDk for the kth switch-

ing is obtained.
Then, by applying the stability analysis in Branicky (1998)

it follows that the multiple-model switching system is stable.

Further with Theorem 1, for any initial conditions, all signals

in the system are bounded and the attractive zone

f(x,~x)j k x k \ k,~x= 0g is asymptotically stable.
Case b (N � 1 fixed models and one adaptive model):

In this case ui is fixed for i 2 f1, 2, � � � ,N � 1g and the N th

model is adaptive. When the ith fixed model is active and con-

troller ui is applied on the plant, using the analysis in case a it

follows that the estimation error and control error of the

adaptive model are decreasing or the increase is at least

bounded. Then using the dwell-time design in equation (33)

the error of the adaptive system can decrease to 0, which leads

to a bounded JN while fJi, 1 < i < N � 1g grow unbounded.

Hence, there exists a finite time such that the adaptive system

is active for all t . T . Using the results in Theorem 1 it follows

that for any initial conditions, all signals in the system are

bounded and the attractive zone f(x,~x)j k x k \ k,~x= 0g is

asymptotically stable.

A simulation example

Consider the following nonlinear system

_x1(t)= x2(t)+ 0:43ucosx1(t)
_x2(t)= � 6sinx1(t)� 8sinx2(t)� 0:2 � ucos, x1(t)+ u(t)
y= x1(t)

8<
:

ð34Þ

Chen et al. 5

 at Beijing Institute of Technology on November 26, 2013tim.sagepub.comDownloaded from 

http://tim.sagepub.com/
http://tim.sagepub.com/


f (x(t))=
x2(t)

�6sinx1(t)� 8sinx2(t)

� �
, b=

0:4
0:2

� �
, F(x(t))=

cosx1(t), g(x(t))=
0

1

� �
,C = 1 0½ � and u is the unknown

parameter within the known uncertainty zone u 2 ½0, 20�.
When all the states are available and u is known, it is easy to

design a state feedback control law u� using the backstepping

methods in Krsti’c et al. (1995) to regulate the output y to 0

u�(t)= � x1(t)� 20z2(t)+ 6sinx1(t)+ 8sinx2(t)

� 0:23ucosx1(t)+ _a1(t)
ð35Þ

where a1(t)= � 2 � x1(t)� 0:43ucosx1(t) and z2(t)=

x1(t)� a1(t).
Furthermore, by solving the matrix inequality in equation

(8) using the method in Cho and Rajamani (1997), we get

P=
0:5 �0:5
�0:5 1

� �
, L=

�22:4850

�4:1175

� �

which satisfies bT P=C1. And the compensator is obtained

from equation (20)

b(x̂(t), û(t))=
1

jx̂2(t)j
LT x̂(t)3~y(t) ð36Þ

For the multiple-model design, nine identification models
are available and the initial parameters are set as

f0, 1, 3, 6, 9, 12, 15, 18, 20g. The parameters update as

equation (9) and the dwell-time is obtained online with equa-

tion (33).
From Figure 1(a) we can see that when all the states are

available and u is known, the system’s output under the con-

trol law u� approaches zero fast and smoothly, which is shown

with a dash line. When all the states are not available and u is

unknown, we can obtain a control law û� replacing x and u in

u� by x̂ and û, respectively. Using û�, the system’s output is

shown as a solid line in Figure 1(a) and we can see the system’s

output is still bounded, but there is a jitter in the steady state.
Applying the compensator in equation (36) on the basis of

û� without using the multiple-model scheme, the system’s out-

put is shown in Figure 1(b) by the solid line. It can be seen

the steady-state performance of the system is improved. In

order to deal with the uncertainty of system parameters and

improve the transient performance, the multiple-model

scheme and the compensator are used and the system’s out-

put is shown in Figure 1(b) by the dashed line. It can be seen

that both the transient and steady-state performance is much

improved. Figure 2 shows that the switching will stop in finite

time, which is proved in Theorem 2.

Conclusion

A systematic algorithm for nonlinear adaptive control based on

the observer and multiple models has been proposed in this

paper. A compensator has been designed to improve the steady-

state performance and a multiple-model switching scheme has

Figure 1. The system output.
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been introduced to improve the transient performance.
Furthermore, a state-dependent dwell-time scheme has been
proposed to ensure the stability of the multiple-model switching
system. It has been proved that the switching stops in finite time
and stays on the adaptive system forever. A simulation example
demonstrated the efficiency of the proposed method.
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Figure 2. The switching signal of the multiple-model switching scheme.
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