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Abstract

The problems of flocking with both connectivity maintenance and obstacle avoidance for the network of dynamic agents are addressed. In the case

where the initial network is connected, a decentralized flocking control protocol is proposed to enable the group to asymptotically achieve the desired

stable flocking motion using artificial potential functions combined with stream functions, which could not only maintain the network connectivity of

the dynamic multi-agent systems for all time but also make all the agents avoid obstacles smoothly without trapping into local minima. Finally, nontrivial
simulations and experiments are worked out to verify the effectiveness of the theoretical methods.

Keywords

Flocking, connectivity maintenance, obstacle avoidance, stream function

Introduction

In the past few years, coordinated flocking has emerged as a
robust way for addressing a wide variety of spatially distribu-
ted tasks ranging from extraterrestrial exploration, surveil-
lance, rescue operations and military missions to cooperative
construction, and so on. Considerable efforts have been made
in analysis and modeling of the collective dynamics for a bet-
ter understanding of how a group of mobile agents can per-
form complex tasks without centralized control, and how to
design suitable distributed strategies to perform a collective
task.

Flocking is characterized by decentralized control, local
interaction and self-organization. It is called stable flocking
when all the agents asymptotically approach the same velo-
city and maintain desired configuration formations, while col-
lisions between agents and with obstacles are avoided, when
moving towards a destination point with only limited local
information. During the last decade, a large amount of litera-
ture has paid their attention to the algorithms and theories of
two kinds of flocking control problem: free flocking and con-
strained flocking. The classical flocking model consisting of
three heuristic rules of separation, cohesion and alignment
has been proposed (Reynolds, 1987). A group of autonomous
agents moving in the plane is considered and a class of local
control laws is introduced which combined the artificial
potential field with the velocity consensus to obtain stable
flocking motion in both fixed and switching networks
(Tanner et al., 2003; Tanner et al., 2007). Moreover, many
other constraints have been added to the basic flocking algo-
rithms for achieving various control objectives such as obsta-
cle avoidance (Chang et al., 2003; Olfati-Saber, 2006; Fahimi
et al.,, 2009) and connectivity maintenance (Zavlanos and
Pappas, 2007; Zavlanos et al., 2009; Dimarogonas and

Johansson, 2010; Su et al., 2010; Wang and Wang, 2010). The
problem of obstacle avoidance using gyroscopic forces for
multi-agent systems is discussed, which relies on a centralized
construction of the potential function in Chang et al. (2003).
A complement to the traditional panel method is introduced
to generate a more effective harmonic potential field for
obstacle avoidance in dynamically changing environments,
and a group of mobile robots working in an environment
containing stationary and moving obstacles is considered
(Fahimi et al., 2009). A comprehensive theoretical framework
of distributed flocking control and a unified analytical look
at Reynolds’s rules are proposed (Olfati-Saber, 2006). Two
cases of flocking in free-space and the presence of multiple
obstacles are considered. Three flocking algorithms are pre-
sented: two for free flocking and one for constrained flocking,
but these failed to maintain the connectivity of the interac-
tion. However, most previous works make a basic assumption
that there is a connected frequently switching topology during
the evolution, which is difficult to implement in the engineer-
ing applications.

As a common inherent condition, it is often required that
there is connectedness of the underlying communication net-
work in these distributed strategies in which the information

'School of Automation, Beijing Institute of Technology, Beijing, PR China

2Key Laboratory of Complex System Intelligent Control and Decision,
Beijing, PR China

3School of Automation, Nanjing University of Science and Technology,
Nanjing, PR China

Corresponding author:

Qian Ma, School of Automation, Nanjing University of Science and
Technology, Nanjing, 210094, PR China

Email: gianmashine@gmail.com

Downloaded from tim.sagepub.com at Beijing Institute of Technology on November 26, 2013


http://tim.sagepub.com/
http://tim.sagepub.com/

Transactions of the Institute of Measurement and Control 0(0)

exchange and sharing can be realized between neighbors to
ensure reliable and efficient motion coordination. Therefore,
it is significant to design decentralized motion control laws
that enable the multi-agent systems to achieve desired coop-
erative tasks while maintaining the network connectivity. The
problem of preserving the connectivity property of the net-
work is solved by translating the connectivity condition to a
projected graph Laplacian and guaranteeing the positive defi-
niteness of the eigenvalues (Zavlanos and Pappas, 2007). A
distributed control law is designed for connectivity mainte-
nance objective via the use of decentralized navigation func-
tions, which are bounded potential fields (Dimarogonas and
Johansson, 2010). Furthermore, potential function method as
an efficient technique is used to preserve the existing commu-
nication links for double-integrator agents in the papers
(Zavlanos et al., 2009; Su et al., 2010). A bounded distributed
controller is proposed to steer a group of agents to synchroni-
zation while avoiding collision as well as preserving connec-
tivity among agents for all time (Wang and Wang, 2010).

To the best of our knowledge, one common method used
in current literatures for multi-agent systems to realize obsta-
cle avoidance and connectivity maintenance is to drive the
neighboring agents to follow the (sometimes negated) gradient
of an artificial potential field (APF) which is dependent on
relative distance from each other, and is constructed such that
the resulting vector field is exterior directed on the boundaries
of the configuration space. However, a major drawback of the
potential field method is the presence of local minima deviat-
ing from the globally optimal goal, which may lead to unex-
pected failure of task implementation. To overcome the
aforementioned drawbacks, a decentralized cooperative con-
trol algorithm is proposed for multi-agent systems which
could deal with flocking, connectivity maintenance and obsta-
cle avoidance simultaneously. A hybrid mechanism for poten-
tial flow is presented to realize the agent coordination by
integrating the advantages of APFs with harmonic stream
functions for obstacle avoidance. Under the premise of the
initial connectivity of the network topology, an APF that has
the feature of attraction forces is used to achieve connectivity
preserving among agents. Furthermore, a stream function is
designed and combined with the APF to generate smooth and
obstacle-avoidance trajectories, which guide all the agents to
the target without trapping into local minima.

The remainder of the paper is organized as follows. In
Section 2, the problem is formally formulated and several pre-
liminaries are introduced. In Section 3, a decentralized coop-
erative control law is proposed to solve the problem of
flocking with connectivity maintenance and obstacle avoid-
ance under arbitrary initially connected network. Simulations
and experiments are shown in Section 4 to validate the theo-
retical results. Finally, conclusions are drawn and future
directions are stated in Section 5.

Problem statement and preliminaries

Problem formulation

Consider a group of n agents moving in the two-dimensional
Euclidean plane with double integrator dynamics. A
continuous-time model of the system is described by

X =

(1)

\./i = Uj

where x; € R? is the position vector of agent i, v; € R? is the
velocity vector, u; € R? is the control input acting on agent i.
The relative position vector between agents i and j is repre-
sented by x; = || x; —x; ||. In order to fulfill the control objec-
tive, u; € R? should be designed to achieve the stable flocking
motion, which not only makes all the agents asymptotically
approach the same velocity and the desired inter-agent dis-
tance stabilization, but also realizes obstacle avoidance under
the condition of preserving network connectivity at all times
when the network is initially connected.

Suppose that all the agents have the same sensing radius
R. The underlying switching network can be represented by a
time-varying undirected graph G(t) = {V,E(t)} consisting of
a vertex set V = {1,2, ...,n}, indexed by the group of agents
and an edge set E(f) = {(i,j)| || x4(?) || <R}, containing
unordered pairs of nodes that represents neighboring rela-
tions. The set N;(¢) = {j|(i,j) € E(¢)} is the set of agent i’s
neighbors.

Preliminaries

The following definitions and theorems are derived from
Okiishi et al. (2006). Incompressible, inviscid, irrotational
fluid flow is discussed to describe potential functions in which
the flow is always along the gradient of the fluid potential.
Only incompressible fluid is discussed in this paper.

Definition 2.1 (stream function and streamline): The stream
function is defined for two-dimensional flows of various
kinds. The stream function can be used to plot streamlines,
which represent the trajectories of particles in a steady flow.
Streamlines are perpendicular to equipotential lines.

Consider a two-dimensional incompressible flow; the con-
tinuity equations in Cartesian coordinates are given by,

) d
Moy )
ox  dy

where u, v are the components of the fluid velocity in two-
dimensional x—y plane. The partial differential equation still

has two unknown function, # and v. However, if a new func-
tion W is arbitrarily defined as,

v A
= ——,v=— 3
ay VT o (3)
Then the continuity equation becomes
dov 9. W PV PV
St (—o) =t =0 (4)
oax dy ox ay oxady  dyox

This new function W is defined as a stream function. Note
that if we can find a stream function W that meets the equa-
tion (3), then the continuity equation need not be solved.

The streamlines are lines where the stream function is con-
stant. At every point in the flow field, streamlines are tangent
to the velocity field. That is
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dy v
2= 5 : .
dx u ) | PO beemenes O S
What we have proved then is that the line ¥ = C (C indicates :
a constant value) is a streamline of the flow. Alternately the o Pt [
equation of a streamline is given by ¥ =C.
B pemmmeees [RRRhit] Rebhhhtd
Definition 2.2 (uniform flow): The flow is defined as uniform >
flow when the velocity and other hydrodynamic parameters Py I S S R
do not change from point to point at any instant of time in
the flow field. Let the strength of flow U. = C, the stream N b R
function for uniform flow can be easily calculated and is
given by, 0 - E E R
0 2 4 6 8
v v X
Upo=—,v=—=0 (6) b
ay ox
Figure |. Stable flocking APF.
Definition 2.3 (doublet flow) A doublet flow is a superposition
of a sink and a source with the same strength. The stream o
. L 11 1 .
function of doublet flow is given by Vil ) = { (szfl\ d,»,) ®ope 0< | xj || <R
2 c x| >R
N L (7) (9)
(&> + %)

where K is the strength of the doublet flow and r is the radius
of the obstacle boundary.

Remark 1. The usefulness of the stream function lies in the
fact that the velocity components in the x- and y-directions at
a given point are given by the partial derivatives of the stream
function at that point. Streamlines are curves that show the
mean direction of the fluid at the same instant of time. The
curves are tangential to the velocity vectors at any points
occupying the streamline. They depict the motion of the dif-
ferent particles in the flow field at the same instant of time
and show the direction a fluid element will travel in at any
point in time. By definition, different streamlines at the same
instant in a flow do not intersect, because a fluid particle can-
not have two different velocities at the same point.

Design of control laws

Design of control laws using stream function

Since the connectivity of the network cannot be guaranteed
as time evolves with only initial connectivity, corresponding
potential functions should be designed to prevent initially
interconnected agents from moving out of their communica-
tion range and avoid collisions. Furthermore, it is also
required that all the agents reach a common velocity while
maintaining the desired group configuration which is
described by

V!”(l) = V,‘(l) — V(t) =0 .
{xy]'(f) =x;(t) — x_;(t) —dy; Vi,jeV (8)

where dj; is the desired distance between agents i and j. Hence,
the potential function for stable flocking can be devised as
follows:

where ¢; =2, ¢;=1 and ¢=0. V(| x; ||) is a nonnegative,
piecewise continuous, differentiable for (0, R) and unbounded
function of the distance | x; |, which satisfies
Vi(|l x5 ||) — o, as || x;; || = 0 or || x; ||— R. The main differ-
ence between the potential function Vj; here from Tanner et
al. (2007) is that ¥} tends to infinite when the distance
between agents i and j tends to R, which can guarantee the
preservation of all the initial links (see Figure 1).

Note that the potential function (9) is continuously differ-
entiable in the interval (0, R) even if a new edge is added into
E(t). Hence the proposed APF enables the system to approach
the stable flocking configuration and preserve the network
connectivity simultaneously.

Moreover, as is well known, a fundamental drawback in
the application of the APF method is the presence of local
minima, which could force the agents to rest when approach-
ing the obstacles and fail to achieve the desired task. In order
to avoid obstacles, the concept of fluid mechanics is used and
a virtual leader is introduced for each agent that is free of col-
lision from obstacles. The basic idea is to regard the agents as
part of the flow, and take the streamlines as the reference tra-
jectories to be followed by the agents (see Figure 2(a)).
According to the definition of the streamline, the velocity vec-
tors of any points occupying the streamline can be obtained.
Thus, the points on the streamline can be used as virtual lead-
ers which lead each agent avoid obstacles along the smooth
streamlines. For simplicity and without loss of generality, the
cylinder-shaped obstacle centered at the origin with radius r
is considered and placed in two-dimensional incompressible
flow. Flow past a circular cylinder can be obtained by com-
bining uniform flow with a doublet flow. Let the strength of
the uniform flow and the doublet flow be U and K, respec-
tively. The superimposed stream function is given according
to definition 2.2 and definition 2.3

V= \I}uniformﬂow + qjd{)uhlet = Uy -K (10)

I'Zy
G +57)
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Vil

1]

Uniform flow

Stagnation streamiine /=0 7 =R

Flowover a cylinder

Doublet

(b)

Figure 2. Streamlines around cylinder-shaped obstacle.

Note that there x* + 3> = 7 holds on the boundary of the
obstacle, thus K = U. It is obvious that for the stream func-
tion on the surface of the cylinder ¥ = 0, since the streamline
which passes through the stagnation point has a value of zero.
The stream function for flow past a circular cylinder becomes

v = (11)

r2
w%w+ﬁ4

The plot of the streamlines around the obstacles is shown
in Figure 2(b), which illustrates an example of the stream
function of single static cylinder obstacle placed in two-
dimensional incompressible flow, the lines represent the
streamlines, and the circle AB is the boundary or radius of
the obstacle. Note that the paths actually generated by fol-
lowing the streamlines tend to be smooth due to the tangent
boundary condition. The point on the instantaneous stream-
lines can be used as virtual leaders and could guide the associ-
ated agents to avoid obstacles safely and smoothly.

When each agent i enters in the flow potential range of the
obstacle, their orthogonal projection point on the streamlines
will be selected as a set of the virtual leaders, the velocity of
the virtual leaders is assigned the speed v;;, which is equal to
the velocity of the stream field around the obstacle.

ov v
G =V = u iy = — o O 12
Vil u+iv o i (12)

The potential field for consensus tracking between agents i
and their virtual leader is denoted by V;; which is shown as

below
1 1 1\?
2 \R— H X; — Xj1 H R

The relative position vector between agents i and its virtual
leader is represented by x; = x; — xy
The explicit control input is chosen as below:

ui = (— YoVl s—=% 1) = > a0 —%'))

JENi(t) JENi(1)
+ (= Vi VaCll % || ) — kixi — ko + Vi)

Vi= (13)

(14)

where ki, k; >0 are scalar control gains, N;(f) is the time
dependent neighborhood of agent i at time ¢, the relative velo-
city vectors between agents i, j and their virtual leaders are
represented by v; = v; — vy and ¥; = v; — v respectively. A(f)
is defined as follows:

0 if((az(®) = ) A (]| x4() || =R —8))
or((ay(t) = 1) A (|| x3(2) || =R))
1 otherwise

A1) = [az(0)] =

(15)
where 0 < & < R is a constant switching threshold.

Remark 2. Connectivity maintenance is not a necessary con-
dition for multi-agent flocking control. If the system is jointly
connected in any given time interval, then each agent will
almost surely converge on the target. However, jointly con-
nected interconnection topologies would make it more diffi-
cult to achieve the flocking process, and its convergence
speed is significantly slower than that of connectivity mainte-
nance. Thus, connectivity maintenance is more practical for
multi-agent flocking control from the practical application
and implementation aspects.

Remark 3. If only the connectivity maintenance is applied in
the multi-agent system without using stream-based obstacle
avoidance, then the obstacle avoidance cannot be achieved
due to the presence of local minima. If only obstacle avoid-
ance is considered in the system, the connectivity of the
multi-agent network may be broken, and then the coopera-
tive control task would fail eventually. Therefore, the combi-
nation of connectivity maintenance and obstacle avoidance
has significant advantages over those previous results which
only considered connectivity maintenance or obstacle avoid-
ance in several practical applications.

Stability analysis

Theorem 3.1. Consider a system of n agents with dynamics
(1), each agent is steered by control law (14) and the neigh-
boring graph is initially connected. Then the desired stable
flocking motion can be achieved when all the agents asymp-
totically approach the same velocity and collisions between
agents and with obstacles are avoided.
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Proof: Consider the positive semi-definite function given as
follows:

n

J= ;2(2 Vi % =% || )) + Z(Vil( Il % 11)

i=1 \jeN(r) i=1 (16)

+ Z(fo})+ klZ(xl X,

i=1

where V;; represents the potential field between agent i and its
virtual leader.
Taking the time derivative of J, we have

J=y u' (Z Vi V([ % =% ||)) + 3 H Ve Vall %D

i=1 JEN;i(1) i=1

n n
+ Z{’iT({)i — Vi) + ki Z\A’inCi

i=1 i=1

(17)

v; = u; 1s the control input of agent i given in (14), and
therefore

J= Zf/iT (Z Vi Vil & =% || ))

i=1 jEN; (1)

n n n
Zf’iTVx, V(|| % 1] ) + Zf’iT(ui —v) + ki Z‘%‘Tfi

i=1 i=1 i=1

= Z (VzT < E a (Vi — V) — kz%))
i=1 JENi(1)
—k i Vi — i (f’iT Z ai(t)(Vi — 9j)>

i=1 i=1 JEN;(t)

— 9 ((kaly + L)) @ L)V <0

+

[
Il

(18)

where L,(¢) is the graph Laplacian associated with the undir-
ected graph G(¢), and ® denotes the Kronecker production
=[5, .. ] Thus, J <0, and J = 0 if and only if
=0 for each i€N. Specifically, J =0 implies that
V1 = v, = ... = v, = 0. Therefore, the velocity of agent i and
its virtual leader become the same, it follows that, v; = v;, Vi.
Moreover, since the potential function ¥7; and Vj are
unbounded at || x;; || = R, the connectivity between the agents
and the connectivity between the agents and their virtual lead-
ers could be maintained simultaneously. Furthermore, the vir-
tual leaders are on the streamline around obstacles. Hence,
for flow past a circular cylinder, all the agents will asymptoti-
cally achieve the same velocity; almost every final configura-
tion except for a local maximum or saddle point locally
minimizes each agent’s global potential. The stable flocking
configuration is achieved under the control law (14).

Simulation and experiment

Simulation

In this section, comparative numerical simulations are per-
formed to illustrate the theoretical results obtained in previous
sections and we compare our proposed obstacle avoidance
flocking algorithm with the flocking algorithm proposed by

5
Table I. Simulation parameters.
Parameter Value
Size of sensing region 90mXx90m
Number of nodes 20
Simulation time 20s
Target position [80m, 80m|
Transmission range of nodes R 4.5m

Desired distance dj 3m

Switching threshold 6 0.7m

Initial velocity of nodes Randomly with arbitrary
direction and

magnitude within the range
of (0, 5) m/s

[0, 20] m X [0, 20]m within
the circle of radius R*=12 m
0.5m/s

Initial position of nodes

The maximum velocity of node

Yim

Figure 3. The entire trajectories of agents.

Olfati-Saber (2006). The following parameters applied in the
simulation are shown in Table 1. The simulations are per-
formed with dynamic model (1) in a two-dimensional plane,
labeled with dots. The agents are arranged to construct the
desired formation at the initial position, then the agents are
controlled by the control law (14) to avoid the obstacles when
they are in the process of stable flocking; the target points are
reached eventually. In the simulations, the initial positions,
velocities and links are randomly initialized to make the initial
interactive network connected.

To validate the proposed methods, the simulation results
of the flocking algorithms without connectivity maintenance
(Olfati-Saber, 2006) and of that proposed in our work are all
demonstrated in Figures 3—4. The locations of the obstacles,
the agents and the target point are deliberately set in a straight
line to simulate the circumstance where repulsive force of the
obstacle and the attractive force of the target point may cause
local minima or unforced crashes. The axes of the figure are
appropriately chosen to illustrate the corresponding results.

Figure 3 describes the entire trajectory of the multi-agent
system using our proposed algorithm. The far-end black circle
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Figure 4. Simulation time sanpshots of cooperative flocking under control law (14).
in Figure 3 represents the actuating range of target position.
It can be seen from the whole trajectory that the stable flock- 50
ing motion is achieved. The connectivity of underlying time-
varying interaction topology is preserved and the obstacle 46k
avoidance process is very smooth. Specifically, Figures 4 (a)— 46l
(c) show the state of twenty agents and neighboring relations
between the agents, which are represented by solid lines at dif- e .
. . . . « o <
ferent instants using our proposed algorithm. Figure 5 shows 42} b (//"/ .
the configuration of the group using the projection method € 40 .«/’ ‘ prd
for avoiding obstacle from Olfati-Saber (2006). As can be seen > . e,
from Figure 5, one of the agents hit the obstacles, resulting in 38 /'\\ “?,
partition of the network and failing of obstacle avoidance for - L R
the multi-agent network, which is due to the problem of local o
minima. il
32 o
r .!«/ \.4
Experiment = % 35 10 I
Xim

In this section, the experimental verification of flocking with
real mobile robots is presented. The experiment of flocking
control for multi-agent systems with connectivity

Figure 5. Simulation time snapshots of cooperative flocking at t=15 s
using control law of Olfati-Saber (2006).
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(e)t=45s

Figure 6. Flocking of five mobile robots in indoor environment.

maintenance and obstacle avoidance based on the stream
function and connectivity-preserving APF is carried out with
four Pioneer3-AT mobile robots and one Pioneer3-DX
mobile robot to validate the practical effectiveness of the pro-
posed distributed flocking control algorithm. We assume that
all the robots satisfy nonslipping and pure-rolling constraints

and each robot can obtain the information needed via its
wireless communication equipment.

As is shown in Figure 6, the environment is a rectangular
space with 7 m X 8 m in which four pillars are used as the
obstacles. The target point locates at the right corner of the
rectangular space. The process of experiment is shown in

Downloaded from tim.sagepub.com at Beijing Institute of Technology on November 26, 2013


http://tim.sagepub.com/
http://tim.sagepub.com/

Transactions of the Institute of Measurement and Control 0(0)

Figures 6(a)—(f), which depict six typical snapshots of the
flocking process within a time frame of 60 seconds. The initial
positions and connections of the group are illustrated in
Figure 6(a). Figure 6(b) shows the stable flocking process
forced by the attraction/repulsion potentials with connectivity
maintenance before avoiding obstacle. Figures 6(c)-(e)
demonstrate the stable and smooth process of obstacle avoid-
ance. Figure 6(f) shows the formation restoration of the sys-
tem in steady state and moving towards the target point. It
can be observed that despite the presence of nonholonomic
dynamics, communication delays, noises, and so on, the
desired flocking behavior is successfully achieved at last.

Conclusion

In this paper, the flocking control problem for a network of
dynamic agents with the purpose of connectivity maintenance
and obstacle avoidance is investigated. A novel framework
which combines the stream function with the artificial poten-
tial field is presented. The distinguishing feature of the pro-
posed control law is that the stream function yields smooth
trajectories for obstacle avoidance while the interactive poten-
tial guarantees the stability of the flocking motion. The con-
trol laws can not only make the agents achieve the velocity
alignment and reach the desired configuration, but also fulfill
the requirements of connectivity maintenance and obstacle
avoidance. Future research will focus on the impact of com-
munication link failure on the system as well as the flocking
problem for multi-agent groups.

Funding

This work was supported by National Science Fund for
Distinguished Young Scholars (grant number 60925011),
Projects of Major International (Regional) Joint Research
Program NSFC (grant number 61120106010), the NSFC
(grant number 61175112) and the Beijing Education
Committee Cooperation Building Foundation Project.

References

Chang DE, Shadden SC, Marsden JE and Olfati-Saber R (2003) Col-
lision avoidance for multiple agent systems. In: Proceedings of
42nd IEEE conference on decision and control, 2003, Vol. 1, pp.
539-543.

Dimarogonas DV and Johansson KH (2010) Bounded control of net-
work connectivity in multi-agent systems. /[ET Control Theory and
Applications 4(8): 1330-1338.

Fahimi F, Nataraj C and Ashrafiuvon H (2009) Real-time obstacle
avoidance for multiple mobile robots. Robotica 27(2): 189-198.
Okiishi MY, Munson B and Young D (2006) Fundamentals of Fluid

Mechanics. John Wiley & Sons.

Olfati-Saber R (2006) Flocking for multi-agent dynamic systems:
Algorithms and theory. IEEE Transactions on Automatic Control
51(3): 401-420.

Reynolds CW (1987) Flocks, herds and schools: A distributed beha-
vioral model. In: ACM SIGGRAPH Computer Graphics 21(4): 25—
34.

Su H, Wang X and Chen G (2010) Rendezvous of multiple mobile
agents with preserved network connectivity. Systems and Control
Letters 59(5): 313-322.

Tanner HG, Jadbabaie A and Pappas GJ (2003a) Stable flocking of
mobile agents, Part I: Fixed topology. In: Proceedings of 42nd
IEEE conference on decision and control, 2003, Vol. 2, pp. 2010—
2015.

Tanner HG, Jadbabaie A and Pappas GJ (2003b) Stable flocking of
mobile agents, Part II: dynamic topology. In: Proceedings of 42nd
IEEE conference on decision and control, 2003, Vol. 2, pp. 2010
2015.

Tanner HG, Jadbabaie A and Pappas GJ (2007) Flocking in fixed
and switching networks. IEEE Transactions on Automatic Control
52(5): 863-868.

Wang L and Wang X (2010) Flocking of mobile agents while preser-
ving connectivity based on finite potential functions. In: 2010 8th
IEEE In:ternational Conference on Control and Automation
(ICCA), pp. 2056-2061.

Zavlanos MM and Pappas GJ (2007) Potential fields for maintaining
connectivity of mobile networks. IEEE Transactions on Robotics
23(4): 812-816.

Zavlanos MM, Tanner HG, Jadbabaie A and Pappas GJ (2009)
Hybrid control for connectivity preserving flocking. /EEE Trans-
actions on Automatic Control 54(12): 2869-2875.

Downloaded from tim.sagepub.com at Beijing Institute of Technology on November 26, 2013


http://tim.sagepub.com/
http://tim.sagepub.com/



