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Abstract Recently, stability analysis of time-delay systems

has received much attention. Rich results have been obtained

on this topic using various approaches and techniques. Most

of those results are based on Lyapunov stability theories. The

purpose of this article is to give a broad overview of stabil-

ity of linear time-delay systems with emphasis on the more

recent progress. Methods and techniques for the choice of

an appropriate Lyapunov functional and the estimation of the

derivative of the Lyapunov functional are reported in this ar-

ticle, and special attention is paid to reduce the conservatism

of stability conditions using as few as possible decision vari-

ables. Several future research directions on this topic are also

discussed.

Keywords time-delay system, delay-independent stabil-

ity, delay-dependent stability, linear matrix inequality,

Lyapunov-Krasovskii functional

1 Introduction

Time-delay systems as a kind of infinite-dimensional system

are also called hereditary systems, systems with aftereffects,

systems with time-lags, systems with dead-time, equations

with deviating argument or differential-difference equations.

Time-delay is often encountered in many practical engineer-

ing systems such as process control systems, manufacturing
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process, fluid transmissions and networked control systems

[1–6]. Generally speaking, time-delay is usually a source of

poor performance and instability of a control system. Besides

some negative effects, time-delay can also bring some posi-

tive effects. It has been shown that the presence of time-delay

is helpful for the stabilization of some systems [7–9]. There-

fore, stability analysis of time-delay systems is of both prac-

tical and theoretical importance.

Studies on stability of time-delay systems date back to the

18th century. Some famous mathematicians such as Euler and

Bernoulli did some pioneering works. Systematical studies

on this topic began in the 1940s. In recent 15 years, time-

delay systems have being in the golden age, and very exten-

sive results have been obtained [10–47]. Most of those results

are on the basis of Lyapunov stability theories.

Stability conditions for time-delay systems can be classi-

fied into two categories. One is delay-independent stability

conditions and the other is delay-dependent stability condi-

tions. Generally speaking, delay-dependent stability condi-

tions are less conservative than delay-independent ones espe-

cially when the time-delay is small. Therefore, much atten-

tion has been paid to the study of delay-dependent stability

conditions. A great number of efforts have been paid to derive

a less conservative delay-dependent stability condition. Most

of the existing delay-dependent stability conditions are often

described in terms of linear matrix inequalities (LMIs) which

can be efficiently solved by some numerical algorithms [48].

In this article, an overview of stability of linear time-delay

systems is given. Some methods and techniques used to de-
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rive stability conditions for time-delay systems are reviewed.

Several future research directions on this topic are also dis-

cussed. This article is organized as follows. In Section 2, Lya-

punv stability theories for time-delay systems are presented.

In Section 3, two important issues for stability analysis of

time-delay systems are mainly reviewed. One is how to con-

struct an appropriate Lyapunov functional, and the other is

how to estimate the derivative of the Lyapunov functional. In

Section 4, several future research directions on this topic are

discussed and some conclusions are drawn.

Notation Throughout this article, the superscripts “–1” and

“T” stand for the inverse and transpose of a matrix, respec-

tively; Rn denotes an n-dimensional Euclidean space; Rn×m

is the set of all n × m real matrices; P > 0 means that the

matrix P is symmetric positive definite; I is an appropriately

dimensional identity matrix; some elements in a symmetric

matrix are denoted by ∗; R+ denotes the set of non-negative

real numbers; Cn = C([−h, 0],Rn) denotes the Bannch space

of continuous functions φ : [−h, 0] → Rn; | · | denotes the

Euclidean norm; for any φ ∈ Cn, ‖φ‖c = sup
−h�s�0

|φ(s)| denotes

its norm.

2 Lyapunov stability theories for time-delay
systems

As for stability of time-delay systems, two Lyapunov meth-

ods are often used. One is Lyapunv-Krasovskii functional

method, and the other is Lyapunov-Razumikhin function

method. In this section, these two methods are reviewed.

Consider the following time-delay system described by

ẋ(t) = f (t, xt), t � t0, (1)

where f : R × Cn → Rn is continuous and is Lipschitzian in

xt, and f (t, 0) = 0, and xt = x(t + θ), −h � θ � 0.

Before moving on, the following definition of stability of

the system described by Eq. (1) is given.

Definition

• If for any t0 ∈ R and any ε > 0, there exists a

δ = δ(t0, ε) > 0 such that ‖xt0‖c < δ implies |x(t)| < ε

for all t � t0, then the trivial solution of Eq. (1) is stable.

• If the trivial solution of Eq. (1) is stable and if δ can be

chosen independently of t0, then the trivial solution of

Eq. (1) is uniformly stable.

• If the trivial solution of Eq. (1) is stable and if for any

t0 ∈ R and any ε > 0, there exists a δa = δa(t0, ε) > 0

such that ‖xt0‖c < δa implies lim
t→∞ x(t) = 0, then the triv-

ial solution of Eq. (1) is asymptotically stable.

• if the trivial solution of Eq. (1) is uniformly stable and

there exists a δa > 0 such that for any η > 0, there exists

a T = T (δa, η), such that ‖xt0‖c < δa implies |x(t)| < η

for t � t0 + T and t0 ∈ R, then the trivial solution of

Eq. (1) is uniformly asymptotically stable.

• If the trivial solution of Eq. (1) is (uniformly) asymp-

totically stable and if δa can be arbitrarily large, finite

number, then the trivial solution of Eq. (1) is globally

(uniformly) asymptotically stable.

Next, the Lyapunv-Krasovskii functional method and the

Lyapunov-Razumikhin function method are presented. Let

xt(s, φ) be the solution of Eq. (1) at time t with the initial

condition xs = φ.

Theorem 1 (Lyapunov-Krasovskii stability theorem) [49,50]

Suppose that f maps R×(bounded sets in Cn) into bounded

sets of Rn, and u, v,w : R+ → R
+ are continuous, non-

decreasing functions with u(0) = v(0) = 0 and u(α) >

0, v(α) > 0, for α > 0. If there exists a continuous functional

V : R × Cn → R such that

1) u(|φ(0)|) � V(t, φ) � v(‖φ‖c);
2) V̇(t, φ) � −w(|φ(0)|),

where V̇(t, φ) = lim
Δt→0+

1
Δt (V(t + Δt, xt+Δt(t, φ)) − V(t, φ)), then

the trivial solution of Eq. (1) is uniformly stable. If w(α) > 0

for α > 0, then the trivial solution of Eq. (1) is uniformly

asymptotically stable. Additionally, if lim
α→∞ u(α) = ∞, then

the trivial solution of Eq. (1) is globally uniformly asymptot-

ically stable.

Remark 1 In some cases, the Lyapunov-Krasovskii func-

tional involving the state derivatives ẋt are very useful in

the derivation of the stability conditions. For such a kind of

Lyapunov-Krasovskii functional, the conditions in Theorem

1 should be modified. Please refer to Ref. [51] for details.

The requirement of the state variable x(t) in the interval

[t − h, t] makes the Lyapunov-Krasovskii theorem difficult to

apply. Lyapunov-Razumikhin theorem involving only func-

tions rather than functionals can overcome the difficulty to

some extent.

Theorem 2 (Lyapunov-Razumikhin stability theorem) [49,

50] Suppose that f maps R×(bounded sets in Cn) into

bounded sets of Rn, and u, v,w : R+ → R
+ are continu-

ous, non-decreasing functions with u(0) = v(0) = 0 and
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u(α) > 0, v(α) > 0, for α > 0, and v is strictly increasing.

If there exists a continuous functional V : R × Rn → R such

that

1) u(|x|) � V(t, x) � v(|x|);
2) V̇(t, x(t)) � −w(|x(t)|), if V(t + θ, x(t + θ)) � V(t, x(t))

for θ ∈ [−h, 0],

where V̇(t, x(t)) = d
dt V(t, x(t)) = V(t,x(t))

t
+

V(t,x(t))
x

f (t, xt),

then the trivial solution of Eq. (1) is uniformly stable. If

w(α) > 0 for α > 0, and there exists a continuous non-

decreasing function p(α) > 0 for α > 0, and the above

conditions 2 is strengthened to V̇(t, x(t)) � −w(|x(t)|) if

V(t + θ, x(t + θ)) � p(V(t, x(t))) for θ ∈ [−h, 0], then the

trivial solution of Eq. (1) is uniformly asymptotically stable.

Additionally, if lim
α→∞ u(α) = ∞, then the trivial solution of

Eq. (1) is globally uniformly asymptotically stable.

3 Stability of linear time-delay systems

For the sake of simplicity, the following linear system with a

single discrete delay is considered

ẋ(t) = Ax(t) + A1x(t − τ(t)), t � t0, (2)

where x(t) ∈ Rn is the state vector, A and A1 are system ma-

trices with appropriate dimensions, τ(t) is a bounded time-

varying delay satisfying

0 � l � τ(t) � h, (3)

and

d1 � τ̇(t) � d2. (4)

When the time-delay is constant, the system described by

Eq. (2) can be rewritten as

ẋ(t) = Ax(t) + A1x(t − h), t � t0. (5)

Since Lyapunov-based methods often yield sufficient sta-

bility conditions, many efforts have been paid to reduce the

conservatism of the stability conditions. When using Lya-

punov stability theorems for stability analysis, two issues are

very crucial. One is the choice of an appropriate Lyapunov

functinal, and the other is estimation of the derivative of the

Lyapunov functional. In this article, some existing methods

and techniques concerning these two issues are reviewed.

3.1 How to choose an appropriate Lyapunov functional?

Next, some methods of choosing an appropriate Lyapunov

functional in the existing literature are briefly reviewed.

3.1.1 Some standard Lyapunov functionals

Inspired by the Lyapunov function for a linear system without

delay, V(x(t)) = xT(t)Px(t) is used to derive a stability con-

dition for system described by Eqs. (2)–(4). According to the

Lyapunov-Razumikhin theorem, the following stability con-

dition can be obtained.

Theorem 3 The time-delay system described by Eqs. (2)–

(4) is asymptotically stable if there exist matrices P > 0 and

a scalar q > 0 such that

⎡
⎢⎢⎢⎢⎢⎣

ATP + PA + qP PA1

∗ −qP

⎤
⎥⎥⎥⎥⎥⎦ < 0. (6)

A simple Lyapunov-Krasovskii functional as the follow-

ing form is often used to derive a delay-independent stability

condition:

V(t, xt) = xT(t)Px(t) +
∫ t

t−τ(t)
xT(s)Qx(s)ds. (7)

Based on Eq. (7), a delay-independent stability condition

can be obtained.

Theorem 4 The time-delay system described by Eqs. (2)–

(4) is asymptotically stable if there exist matrices P > 0 and

Q > 0 such that

⎡
⎢⎢⎢⎢⎢⎣

ATP + PA + Q PA1

∗ −(1 − d2)Q

⎤
⎥⎥⎥⎥⎥⎦ < 0. (8)

Remark 2 When the delay is constant, according to Schur

Complement lemma, Eq. (8) is equivalent to ATP+PA+Q+

PA1Q−1AT
1 P < 0. It implies that ATP + PA + AT

1 P + PA1 < 0

which is a necessary and sufficient condition for the stability

of system Eq. (5) with the delay being zero.

Theorem 4 is independent of the time-delay and is very

conservative especially when the time-delay is small. Less

conservative delay-dependent stability conditions are needed.

The following Lyapunov functional is often used in the liter-

ature to derive delay-dependent results.

V(t, xt) = xT(t)Px(t) +
∫ t

t−τ(t)
xT(s)Qx(s)ds

+

∫ 0

−h

∫ t

t+θ
ẋT(s)Zx(s)dsdθ. (9)

Based on the above Lyapunov functional, the following

delay-dependent stability condition can be obtained using the

free-weighting matrices method [52].
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Theorem 5 [52] The time-delay system described by Eqs.

(2)–(4) is asymptotically stable if there exist matrices P > 0,

Q > 0, Z > 0,

⎡
⎢⎢⎢⎢⎢⎣

X11 X12

∗ X22

⎤
⎥⎥⎥⎥⎥⎦ � 0, and any matrices M and N

with appropriate dimensions such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 hATZ

∗ Φ22 hAT
1 Z

∗ ∗ −hZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (10)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X11 X12 M

∗ X22 N

∗ ∗ Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0. (11)

where

Φ11 = PA + ATP + M + MT + Q + hX11;

Φ12 = PA1 + M + NT + hX12;

Φ22 = −N − NT − (1 − d2)Q + hX22.

3.1.2 Augmented Lyapunov functional

Considering that the first term in Eq. (9), xT(t)Px(t), only in-

volves the state x(t) but not the delayed state, an augmented

Lyapunov functional was proposed in Ref. [53] for system

described by Eq. (5).

V(t, xt) = ζ
T(t)Pζ(t) +

∫ t

t−h

T(s)Q
(s)ds

+

∫ 0

−h

∫ t

t+θ

T(s)Z
(s)dsdθ, (12)

where

ζT(t) =

[

xT(t) xT(t − h)
∫ t

t−h
xT(s)ds

]

; (13)


T(s) =
[
xT(s) ẋT(s)

]
. (14)

Remark 3 Compared with the Lyapunov functional

Eq. (9), the augmented Lyapunov functional can lead to

less conservative results. Additionally, it is also applicable

for systems with time-varying delay, which can been seen in

Ref. [54] and references therein.

3.1.3 Triple integral Lyapunov functional

From Eqs. (9) and (12), it can be seen that the Lya-

punov functional often contains some integral terms such as
∫ t

t−h
xT(s)Qx(s)ds and some double integral terms such as

∫ 0

−h

∫ t

t+θ
ẋT(s)Zx(s)dsdθ. A natural question is that if some

triple integral terms are introduced in the Lyapunov func-

tional, what results can be obtained? To answer this question,

a Lyapunov functional containing a triple integral term was

introduced in Refs. [55, 56].

V(t, xt) = ζT(t)Pζ(t) +
∫ t

t−h

T(s)Q
(s)ds

+

∫ 0

−h

∫ t

t+β

T(s)Z
(s)dsdβ

+

∫ 0

−h

∫ 0

β

∫ t

t+λ
ẋT(s)Rẋ(s)dsdλdβ, (15)

where ζ(t) and 
(s) are defined in Eqs. (13) and (14), respec-

tively.

It is shown by simulation results that the Lyapunov func-

tional containing triple integral terms is quite effective in re-

duction of the conservatism of the stability conditions. The

idea of introducing triple integral terms into the Lyapunov

functional is extended to the time-varying interval delay case

in Refs. [57–64], and the following Lyapunov functional is

constructed.

V(t, xt) = ζT(t)Pζ(t) +
∫ t

t−l
xT(s)Q1x(s)ds

+

∫ t−l

t−h
xT(s)Q2x(s)ds +

∫ t−l

t−τ(t)
xT(s)Q3x(s)ds

+

∫ t

t−l
ẋT(s)Q4 ẋ(s)ds +

∫ t−l

t−h
ẋT(s)Q5 ẋ(s)ds

+

∫ 0

−l

∫ t

t+θ
ẋT(s)Z1 ẋ(s)dsdθ

+

∫ −l

−h

∫ t

t+θ
ẋT(s)Z2 ẋ(s)dsdθ

+

∫ 0

−l

∫ t

t+θ
xT(s)Z3x(s)dsdθ

+

∫ −l

−h

∫ t

t+θ
xT(s)Z4x(s)dsdθ

+

∫ 0

−l

∫ 0

θ

∫ t

t+λ
ẋT(s)R1 ẋ(s)dsdλdθ

+

∫ −l

−h

∫ 0

θ

∫ t

t+λ
ẋT(s)R2 ẋ(s)dsdλdθ, (16)

where

ζ(t) = col{x(t), x(t − l), x(t − h),
∫ t

t−l
x(s)ds,

∫ t−l

t−h
x(s)ds}.

Inspired by the idea of triple integral Lyapunov function-

als, some Lyapunov functionals containing quadruple integral

terms were introduced in Refs. [65–67].

3.1.4 Lyapunov functionals using the lower bound of the

delay
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It can be imagined that more information about the delay is

used in the Lyapunov functional and less conservative re-

sults can be obtained. When the lower bound of the delay l

is not “0”, introducing l in the Lyapunov functional can yield

less conservative results. The following Lyapunov function-

als containing the lower bound of the delay is proposed in

Ref. [68].

V(t, xt) = xT(t)Px(t) +
∫ t

t−l
xT(s)Q1x(s)ds

+

∫ t

t−h
xT(s)Q2 x(s)ds +

∫ t

t−τ(t)
xT(s)Q3x(s)ds

+

∫ 0

−h

∫ t

t+θ
ẋT(s)Z1x(s)dsdθ

+

∫ −l

−h

∫ t

t+θ
ẋT(s)Z2x(s)dsdθ. (17)

Remark 4 Besides introducing the information about the

lower bound of the delay, another purpose of constructing a

Lyapunov functional of the form Eq. (17) is to facilitate con-

sidering some useful terms that was ignored in the previous

publications.

However, Lyapunov functional Eq. (17) does not use the

information about the lower bound of the delay sufficiently.

An improved Lyapunov functional using more information

about the lower bound of the delay is proposed in Ref. [62]:

V(t, xt) = xT(t)Px(t) +
∫ t

t−l
xT(s)Q1x(s)ds

+

∫ t−l

t−h
xT(s)Q2x(s)ds +

∫ t−l

t−τ(t)
xT(s)Q3x(s)ds

+

∫ 0

−l

∫ t

t+θ
ẋT(s)Z1 ẋ(s)dsdθ

+

∫ −l

−h

∫ t

t+θ
ẋT(s)Z2 ẋ(s)dsdθ. (18)

In [62], it has been theoretically proved that Lyapunov

functional Eq. (18) can lead to less conservative results than

Lyapunov functional Eq. (17). However, from the Lyaunov-

Krasovskii functional Eq. (18), one can see clearly that there

is no information about the lower bound of time-varying de-

lay in the inner integral upper limits of the double integral

terms. Therefore, the information about the lower bound of

delay is still not fully used and thus may lead to conservative

results. Considering the above facts, a Lyapunov functional

that sufficiently uses the information about the lower bound

of delay was proposed in Refs. [69, 70].

V(t, xt) = ρT(t)Pρ(t) +
∫ t−l

t−d(t)
xT(s)S x(s)ds

+

∫ t

t−l
ζT(s)Q1ζ(s)ds +

∫ t−l

t−h
ζT(s)Q2ζ(s)ds

+

∫ 0

−l

∫ t

t+θ
ẋT(s)Z1 ẋ(s)dsdθ

+

∫ −l

−h

∫ t−l

t+θ
ẋT(s)Z2 ẋ(s)dsdθ

+

∫ 0

−l

∫ t

t+θ
xT(s)Z3x(s)dsdθ

+

∫ −l

−h

∫ t−l

t+θ
xT(s)Z4x(s)dsdθ

+

∫ 0

−l

∫ 0

θ

∫ t

t+λ
ẋT(s)R1 ẋ(s)dsdλdθ

+

∫ −l

−h

∫ −l

θ

∫ t−l

t+λ
ẋT(s)R2 ẋ(s)dsdλdθ, (19)

where

ρ(t) = col{x(t), x(t − l), x(t − h),
∫ t

t−l
x(s)ds,

∫ t−l

t−h
x(s)ds},

ζ(s) = col{x(s), ẋ(s)}. It is easy to seen that the the inner in-

tegral upper limits of the double integral terms and the triple

integral terms contains l. It has been theoretically proved that

Lyapunov functional Eq. (19) can lead to less conservative

results than Lyapunov functional Eq. (18) [69].

3.1.5 Lyapunov functionals with non-positive-definite ma-

trices

In the Lyapunov functional mentioned above, the Lyapunov

matrix P is often required to be positive-definite or semi-

positive. Such a constraint can be relaxed by some bounding

techniques. For example, consider the following augmented

Lyapunov functional

V(t, xt) = ζT(t)Pζ(t) +
∫ t

t−h

T(s)Q
(s)ds

+

∫ 0

−h

∫ t

t+θ
ẋT(s)Zẋ(s)dsdθ, (20)

where ζ(t) and 
(s) are defined in Eqs. (13) and (14), respec-

tively.

If Q > 0 and Z > 0, using the inequalities (33)–(34), one

can obtain that
∫ t

t−h

T(s)Q
(s)ds �

1
h
ζT(t)ΓT

1 QΓ1ζ(t), (21)

∫ 0

−h

∫ t

t+θ
ẋT(s)Zẋ(s)dsdθ �

2
h2
ζT(t)ΓT

2 ZΓ2ζ(t), (22)
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where

Γ1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 I

I −I 0

⎤
⎥⎥⎥⎥⎥⎦ , Γ2 =

[
hI 0 −I

]
.

Therefore, if

P +
1
h
ΓT

1 QΓ1 +
2
h2
ΓT

2 ZΓ2 > 0, (23)

then the Lyapunov functional Eq. (20) is positive definite. The

positive definiteness of matrix P is not necessary, which may

lead to less conservative results [65, 71].

3.1.6 Complete quadratic Lyapunov functional

The above mentioned Lyapunov functionals are all simple

Lyapunov functionals. A limitation of the simple Lyapunov

functional is that it is only applicable to the case that the time-

delay system is stable when the delay is zero. However, there

exist many systems that are unstable for zero delay but sta-

ble for non-zero delay. For stability analysis of such systems,

simple Lyapunov functionals are not suitable. One can use the

complete quadratic Lyapunov functional to solve this prob-

lem. The following complete quadratic Lyapunov functional

was proposed in [50]:

V(t, xt) = xT(t)Px(t) + 2xT(t)
∫ 0

−h
Q(s)x(t + s)ds

+

∫ 0

−h

∫ 0

−h
xT(t + s)R(s, θ)x(t + θ)dsdθ

+

∫ 0

−h
xT(t + s)Z(s)x(t + s)ds. (24)

In fact, it is not easy to check the existence of such a com-

plete quadratic functional. In order to solve this problem, a

discretization scheme was proposed in Refs. [50, 72–74] and

the basic idea of the scheme is to choose Q, R, and Z to be

piecewise linear matrix-functions.

There are also some other complete Lyapunov functionals

in the literature used for the stability analysis of time-delay

systems, see Refs. [75–77] and references therein.

3.2 How to estimate the derivative of the Lyapunov func-

tional?

Once a Lyapunov functional is chosen, the next crucial step of

the derivation of a stability condition is to estimate the deriva-

tive of the Lyapunov functional as tight as possible. Here,

some widely used techniques for estimating the derivative of

the Lyapunov functional are briefly reviewed.

In this subsection, we take the Lyapunov functional Eq. (9)

as an example to illustrate how the existing methods are used

to estimate the derivative of the Lyapunov functional. In addi-

tion, it is assumed that l = 0 in Eq. (3). Taking the derivative

of the Lyapunov functional Eq. (9) along the trajectory of the

system described by Eq. (2) yields

V̇(t, xt) = 2xT(t)Pẋ(t) + xT(t)Qx(t)

−(1 − τ̇(t))xT(t − τ(t))Qx(t − τ(t))

+hẋT(t)Zẋ(t) −
∫ 0

−h
ẋT(s)Zẋ(s)ds. (25)

From Eq. (25), it is easy to see that the key problem of

estimating V̇(t, xt) is to bound − ∫ 0

−h
ẋT(s)Zẋ(s)ds as tight

as possible. In earlier studies, − ∫ 0

−h
ẋT(s)Zẋ(s)ds is of-

ten treated as − ∫ 0

−τ(t)
ẋT(s)Zẋ(s)ds. Clearly a useful term

− ∫ −τ(t)

−h
ẋT(s)Zẋ(s)ds is neglected, which may introduce great

conservatism. Therefore, the following equation is often used

in the current studies [54, 68, 78, 79].

−
∫ 0

−h
ẋT(s)Zẋ(s)ds = −

∫ 0

−τ(t)
ẋT(s)Zẋ(s)ds

−
∫ −τ(t)

−h
ẋT(s)Zẋ(s)ds. (26)

3.2.1 Model transformations and bounding techniques

There are four kinds of model transformations in the litera-

ture, please see Ref. [80] for details. Here, we only consider

the third transformation and the fourth transformation. By

Newton-Leibniz formula, system Eq. (2) can be transformed

to

ẋ(t) = (A + A1)x(t) − A1

∫ t

t−τ(t)
ẋ(s)ds. (27)

Substitute Eq. (27) into Eq. (25), and one can see that

there is a cross term −2xT(t)PA1

∫ t

t−τ(t)
ẋ(s)ds in V̇(t, xt). In

order to deal with the cross term, some bounding techniques

were proposed such as Park’s inequality and Moon et al.’s

inequality. Applying some bounding techniques to the cross

term can produce a term like
∫ 0

−τ(t)
ẋT(s)Zẋ(s)ds. Therefore,

− ∫ 0

−h
ẋT(s)Zẋ(s)ds in Eq. (25) can be partially eliminated.

Lemma 1 (Park’s inequality) [81] For a ∈ Rna , b ∈ Rnb ,

Z ∈ Rna×na > 0 and M ∈ Rna×nb , the following inequality

holds

−2aTb �

⎡
⎢⎢⎢⎢⎢⎣

a

b

⎤
⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

Z ZM

MTZ (MTZ + I)Z−1(ZM + I)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a

b

⎤
⎥⎥⎥⎥⎥⎦ .

Lemma 2 (Moon et al.’s inequality) [82] For a ∈ Rna ,

b ∈ Rnb , N ∈ Rna×nb , X ∈ Rna×na , Y ∈ Rna×nb , and Z ∈ Rnb×nb ,



Jian SUN et al. A survey on Lyapunov-based methods for stability of linear time-delay systems 7

if

⎡
⎢⎢⎢⎢⎢⎣

X Y

∗ Z

⎤
⎥⎥⎥⎥⎥⎦

T

� 0 then the following inequality holds

−2aTNb �

⎡
⎢⎢⎢⎢⎢⎣

a

b

⎤
⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

X Y − N

YT − NT Z

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a

b

⎤
⎥⎥⎥⎥⎥⎦ .

As pointed in Refs. [83, 84], the essence of the use of the

model transformation and bounding techniques is introduc-

tion of slack matrices. However, the slack matrices intro-

duced by the model transformation and bounding techniques

are not sufficient, which makes the resulting stability condi-

tions much conservative.

3.2.2 Free-weighting matrices method and free-matrix-

based integral inequality

In order to overcome the conservatism introduced by model

transformation and bounding techniques, a free-weighting

matrices method was proposed in Refs. [83, 85–89].

There are two ways to introduce the free-weighting matri-

ces. One way is from the Newton-Leibniz formula. One can

see that the following equation holds

2
[
xT(t)N1 + xT(t − τ(t))N2

]
×

[

x(t) − x(t − τ(t)) −
∫ t

t−τ(t)
ẋ(s)ds

]

= 0. (28)

Add the left sides of the above equation to the the deriva-

tive of the Lyapunov functional and use the basic inequality

−2aTb � aTRa + bTR−1b to bound the cross terms, and a

delay-dependent stability condition can be obtained.

The other way is by the system equation. It is clear that the

following equation holds

2
[
xT(t)T1 + xT(t − τ(t))T2 + ẋT(t)T3

]
×

[ẋ(t) − Ax(t) − A1 x(t − τ(t))] = 0. (29)

In addition, the following equation holds

2
[
xT(t)N1 + xT(t − τ(t))N2 + ẋT(t)N3

]
×

[

x(t) − x(t − τ(t)) −
∫ t

t−τ(t)
ẋ(s)ds

]

= 0. (30)

Adding the left sides of the above two equations to the deriva-

tive of the Lyapunov functional and reserving the term ẋ(t)

yield another delay-dependent stability condition.

It can be theoretically proved that these two methods of

introducing free-weighting matrices are equivalent to each

other [53]. However, the second method has an advantage

over the first one. It can make the separation between the Lya-

punov matrices and the system matrices, which makes it very

suitable for robust stability analysis for time-delay systems

with polytopic uncertainties [85].

Inspired by the free-weighting matrices method, some

free-matrix-based integral inequalities are proposed to deal

with the integral term − ∫ 0

−h
ẋT(s)Zẋ(s)ds directly.

Lemma 3 [90] For any matrices Z > 0, M1, M2 and a scalar

h > 0 such that the following integrations are well defined,

then

−h
∫ t

t−h
ẋT(s)Zẋ(s)ds � ξT(t)

⎡
⎢⎢⎢⎢⎢⎣

M1 + MT
1 −M1 + MT

2

∗ −M2 − MT
2

⎤
⎥⎥⎥⎥⎥⎦ ξ(t)

+ξT(t)

⎡
⎢⎢⎢⎢⎢⎣

MT
1

MT
2

⎤
⎥⎥⎥⎥⎥⎦ Z−1

[
M1 M2

]
ξ(t),

(31)

where ξT(t) =
[

xT(t) xT(t − h)
]
.

Lemma 4 [91] For any matrices Z1 � 0, Z3 � 0, R � 0, Z2,

N1, N2 such that the following integrations are well defined,

and such that ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1 Z2 N1

∗ Z3 N2

∗ ∗ R

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0,

then

−
∫ β

α

ẋT(s)Rẋ(s)ds � �TΩ�, (32)

where �T =
[

xT(β) xT(α) 1
β−α

∫ β

α
xT(s)ds

]
, Ω = (β −

α)
(
Z1 +

1
3 Z3

)
+N1(e1−e2)+(e1−e2)TNT

1 +N2(2e3−31−e2)+

(2e3−31− e2)TNT
2 , e1 = [I 0 0], e1 = [0 I 0], e1 = [0 0 I].

3.2.3 Jensen’s inequality and Wirtinger-based integral in-

equality

The free-weighting matrices method can lead to less conser-

vative stability results, but it introduces some free-weighting

matrices, which increases the computational complexity.

Jensen’s inequality does not introduce any additional matri-

ces and has been widely used in the development of delay-

dependent stability conditions.

Lemma 5 [55, 92] For a matrix Z > 0 and a scalar h > 0

such that the following integrations are well defined, then

−
∫ t

t−h

T(s)Z
(s)ds � −1

h

∫ t

t−h

T(s)dsZ

∫ t

t−h

(s)ds, (33)

−
∫ 0

−h

∫ t

t+θ

T(s)Z
(s)dsdθ

� − 2
h2

∫ 0

−h

∫ t

t+θ

T(s)dsdθZ

∫ 0

−τ

∫ t

t+θ

(s)dsdθ. (34)
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Inequality (33) is the well-known Jensen’s inequality pro-

posed in Ref. [92]. Inequality (34) extends the Jensen’s in-

equality to the double-integral case. The Jensen’s inequality

can also be extended to higher order integral cases, such as

triple-integral case. It has been proved that Jensen’s inequal-

ity is equivalent to the free-weighting matrices method for

the constant delay case using the Projection lemma or the

Finsler’s lemma [93–96]. For the time-varying delay case,

these two methods are not equivalent to each other all the

time. A generalized Jensen’s inequality was proposed in

Ref. [97]

Lemma 6 [97] For matrices Z > 0 and M, and a scalar

γ > 0 such that the following integrations are well defined,

let
∫ γ

0
�(s)ds = Eψ,

then, the following inequality holds

∫ γ

0
�T(s)Z�(s)ds

� ψT
(
ETM + MTE − γMTZ−1 M

)
ψ. (35)

Conservatism of the Jensen’s inequality has been analyzed

in Ref. [98]. Jensen’s gap can be made arbitrarily small by

using an uniform fragmentation with sufficient large order. In

order to reduce the undesirable conservatism in the stability

conditions caused by Jensen’s inequality, a Wirtinger-based

integral inequality was proposed in Refs. [99, 100].

Lemma 7 [99, 100] For a matrix Z > 0, and a continuous

function � in [a, b]→ Rn, the following inequality holds

∫ b

a
�T(s)Z�(s)ds

�
1

b − a

∫ b

a

T(s)dsZ

∫ b

a

(s)ds +

3
b − a

ΩTZΩ, (36)

where Ω =
∫ b

a
�(s)ds − 2

b−a

∫ b

a

∫ θ

a
�(s)dsdθ.

Remark 5 It has been theoretically proved in Refs. [101,

102] that the Jensen’s inequality (33) is equivalent to inequal-

ity (31) and Wirtinger-based integral inequality (36) is equiv-

alent to inequality (32).

The above Wirtinger-based integral inequality was ex-

tended to the double-integral case in Ref. [103].

Lemma 8 [103] For a matrix Z > 0, and a continuous func-

tion � in [a, b]→ Rn, the following inequality holds

(b − a)2

2

∫ b

a

∫ b

θ

�T(s)Z�(s)dsdθ

�
∫ b

a

∫ b

θ

�T(s)dsdθZ
∫ b

a

∫ b

θ

�(s)dsdθ + 2ΞTZΞ, (37)

where Ξ = − ∫ b

a

∫ b

θ
�(s)dsdθ + 3

b−a

∫ b

a

∫ b

λ

∫ b

θ
�(s)dsdθdλ.

Furthermore, the Wirtinger-based integral inequality was

refined as the following one in Ref. [104].

Lemma 9 [104] For a matrix Z > 0, and a continuous func-

tion � in [a, b]→ Rn, the following inequality holds
∫ b

a
�T(s)Z�(s)ds

�
1

b − a

∫ b

a

T(s)dsZ

∫ b

a

(s)ds

+
3

b − a
ΩTZΩ +

5
b − a

ΥTZΥ, (38)

where Ω is as defined in Lemma 7, and Υ =
∫ b

a
�(s)ds −

6
b−a

∫ b

a

∫ θ

a
�(s)dsdθ + 12

(b−a)2

∫ b

a

∫ λ

a

∫ θ

a
�(s)dsdθdλ.

Clearly, Lemma 9 is less conservative than Lemma 7 since

an additional positive term 5
b−aΥ

TZΥ is introduced. A more

generalized form for inequality (38) was put forward in Ref.

[105] and named “auxiliary function-based integral inequal-

ity”.

Lemma 10 [105] For s matric Z > 0, a continuous function

� in [a, b] → Rn, and auxiliary scalar functions p1(s) and

p2(s), the following inequality holds
∫ b

a
�T(s)Z�(s)ds

�
1

b − a

∫ b

a

T(s)dsZ

∫ b

a

(s)ds

+

(∫ b

a
p2

1(s)ds

)−1 ∫ b

a
p1(s)�T(s)dsZ

∫ b

a
p1(s)�(s)ds

+

(∫ b

a
p2

2(s)ds

)−1 ∫ b

a
p2(s)�T(s)dsZ

∫ b

a
p2(s)�(s)ds,

(39)

where
∫ b

a
pi(s)ds = 0, i = 1, 2,

∫ b

a
pi(s)p2(s)ds = 0.

Remark 6 If choose p1(s) = (s − a) − b−a
2 and p2(s) =

(s− a)2 − (b− a)(s− a)+ (b−a)2

6 in (39), inequality (38) can be

obtained. Therefore, Lemma 10 is more general than Lemma

9. An auxiliary function-based double integral inequality can

also be seen in [105].
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Most recently, the Wirtinger-based integral inequality has

been extended a more general one as follows.

Lemma 11 [106] For m = 1, 2, . . ., define

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ2m(s) =

(

s − a + b
2

)2m

+

m−1∑

i=0

αmi

(

s − a + b
2

)2i

;

ψ2m+1(s) =

(

s − a + b
2

)2m+1

+

m−1∑

i=0

βmi

(

s − a + b
2

)2i+1

,

assume ∀i = 0, 1, 2, . . . ,m − 1

∫ b

a
ψ2m(s)ψ2i(s)ds =

∫ b

a
ψ2m+1(s)ψ2i+1(s)ds = 0, (40)

and then the following inequality holds

∫ b

a
�T(s)Z�(s)ds �

∞∑

i=0

1
pi
ΩT

i (s)ZΩi, (41)

where pi =
∫ b

a
ψ2

i ds > 0 and Ωi(s) =
∫ b

a
ψi(s)�(s)ds.

3.2.4 Convex combination method

As seen in Eq. (26), when estimate the derivative of the Lya-

punov functional,− ∫ 0

−h
ẋT(s)Zx(s)ds is often divided into two

terms to obtain a less conservative result. Such a manipula-

tion usually results in a stability condition being of the form

Φ+τ(t)X1+(h−τ(t))X2 < 0. In the earlier studies, it was often

treated asΦ+hX1+hX2 < 0, which may introduce much con-

servatism. In Ref. [107], a convex combination method was

proposed to deal with such a situation. τ(t)X1 + (h − τ(t))X2

can be seen as a convex combination of X1 and X2. Therefore,

Φ+ τ(t)X1 + (h− τ(t))X2 < 0 is equivalent to Φ+hX1 < 0 and

Φ + hX2 < 0 considering 0 � τ(t) � h.

The convex combination method was extended to the sec-

ond order case in Ref. [108].

Lemma 12 [108] For symmetric matrices X0, X1, and

X2 � 0, let f (α) = X0 + αX1 + α
2X2, then

f (α1) < 0 and f (α2) < 0⇒ f (α) < 0, ∀α ∈ [α1, α2] .

When using Jensen’s inequality or its generalized version

to deal with the derivative of the Lyapunov functional, the

time-varying coefficients 1
τ(t) and 1

h−τ(t) will be produced. For

example,

−
∫ t

t−τ(t)
ẋT(s)Zẋ(s)ds � − 1

τ(t)

∫ t

t−τ(t)
ẋT(s)ds Z

∫ t

t−τ(t)
ẋ(s)ds,

(42)

−
∫ t−τ(t)

t−h
ẋT(s)Zẋ(s)ds

� − 1
h − τ(t)

∫ t−τ(t)

t−h
ẋT(s)ds Z

∫ t−τ(t)

t−h
ẋ(s)ds. (43)

In order to deal with these time-varying coefficients with

less conservatism, the following reciprocally convex ap-

proach was introduced in Ref. [109].

Lemma 13 For matrices X1 � 0, X2 � 0, . . . , Xn � 0,

vectors ξ1, ξ2, . . . , ξn with appropriate dimensions, positive

scalars α1, α2, . . . , αn with
∑

i αi = 1 and any matrices Ri j

(i = 1, 2, . . . , n, j = 1, 2, . . . , i − 1) such that
⎡
⎢⎢⎢⎢⎢⎣

Xi Ri j

∗ X j

⎤
⎥⎥⎥⎥⎥⎦ � 0,

then, the following inequality holds

n∑

i=1

1
αi
ξT

i Xiξi �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1

ξ2

...

ξn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 R12 · · · R1n

∗ X2 · · · R2n

∗ ∗ ...

∗ ∗ · · · Xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1

ξ2

...

ξn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

The above method was further extended to the second-

order reciprocally convex combination method in [110].

Another way to deal with these time-varying coefficients is

the joint use of the convex combination method and the delay-

partitioning idea [95]. For example, an inequality h−l
τ(t)−l +

h−l
h−τ(t) �

2N
i−1+

2N
2N−i−1 , i = 0, 1, . . . ,N−1 was proposed in [111].

Similar methods can be seen in [112].

4 Conclusions

This article has surveyed some existing methods and tech-

niques for stability analysis of linear time-delay systems.

Choosing an appropriate Lyapunov functional and dealing

with the derivative of the Lyapunov functional are crucial

issues in derivation of a stability condition using Lyapunv

stability theories. Some existing methods and techniques for

these two issues have been reviewed. Relationship between

those methods and techniques are also discussed.

It is clear that the research on time-delay systems has been

booming in recent decades. Many important results for the

stability of time-delay systems have been obtained. However,

there still are some important issues that are not completely

solved. We would like to conclude this paper by elaborating

some of our opinions on the future research directions.

1) In practice, some systems are unstable when the delay

is set to zero. The simple Lyapunov functionals in existing
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literature are not applicable to such systems. The complete

Lyapunov functional can solve this problem. However, the

complete Lyapunov functional suffers from a high computa-

tional complexity coming from the estimation of its deriva-

tive. Therefore, how to construct a simple Lyapunov func-

tional for zero-delay unstable systems and derive a tractable

stability condition is a problem deserving study.
2) In recent several years, some improved version of

Jensen’s inequalities have been proposed. However, these

inequalities do not use the information about the systems

model. In another word, these inequalities are not related with

the system matrices. If the system dynamics are considered in

the derivation of the new integral inequalities, a less conser-

vative result may be obtained.
3) In the existing results, the system is often assumed to

be time-invariant. Results for stability of linear time-varying

systems with delays are rare compared with the rich results

for linear time-invariant time-delay systems. Developing sta-

bility conditions for linear time-varying systems with delays

is a topic worthy of study.
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