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Abstract This paper investigates a 3-D
leader-following formation control problem for a group
of missiles with aerodynamic constraints. To cope with
the large maneuvering formation flight in bank-to-turn
control mode, an integrated backstepping-based dis-
tributed control scheme, combining the inner-loop atti-
tude manipulation and outer-loop formation control,
is proposed. Command filters are introduced to han-
dle the control surface saturations caused by the phys-
ical limitations, and the attitude constraints derived
from the coordinated turn requirements. In addition,
the B-spline neural networks are adopted to recon-
struct the uncertain aerodynamic force and moment
coefficients, of which the unknown parameters are then
online learned by the adaptive tuning laws. The pro-
posed integrated distributed formation control protocol
will guarantee that all states in the closed-loop systems
are cooperatively semi-globally uniformly ultimately
bounded. The formation tracking errors can converge
into a small region around zero by properly adjusting
the control parameters. Finally, numerical simulations
are conducted to demonstrate the effectiveness of the
proposed control scheme.
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1 Introduction

The past two decades havewitnessed the rapid develop-
ment of the advanced anti-missile systems, such as the
surface-to-airmissile systems and close-inweapon sys-
tems (CIWS). With the traditional single missile attack
mode, missiles are faced with great challenges to sur-
vive from the hostile interceptions and electronic coun-
termeasures. Under these circumstances, the multi-
missile cooperative engagement is a good option to
improve the penetration capability. Amissile formation
with a reasonable structure and efficient communica-
tion will be rather deceptive to the defense systems,
which makes it difficult to distinguish and intercept.
Hence, it is of great theoretical and practical signifi-
cance to investigate the missile formation control prob-
lem.

Due to the promising prospect in the modern war-
fare, the multi-missile cooperative engagement prob-
lem has been studied extensively in past decades. Most
of the literatures focused on the cooperative guidance
problem [1–5] whose objective is to coordinate the
impact time so that a group of missiles can simulta-
neously intercept the target at a desirable time. Mean-
while, generating and maintaining an appropriate for-
mation in midcourse flight is also necessary for pene-
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tration and other tactical purposes in the multi-missile
cooperative engagement. Several attempts have been
made to deal with the missile formation control prob-
lem. Cui et al. [6] proposed a three-loop missile for-
mation control scheme, in which the formation con-
trollers were designed using the dynamic inversion
approach. In [7], the flight path angles and the differ-
ences between the leader’s and the followers’ heading
angles were regarded as small quantities; meanwhile,
the leader’s states were treated as perturbations. The
formation keeping controllers were then derived based
on the small disturbance linearization and PI optimal
control theory. Furthermore, Wei et al. [8] extended
the results in [7] to deal with the formation keeping
problem on condition that the leader’s information was
unavailable. According to the adaptive control model
by separating the leader’s motion states from the rel-
ative motion model, the unknown parameters of the
leader were estimated by an adaptive adjustment regu-
lation, whichwas further applied to the formation keep-
ing controller. In addition, other approaches including
the nonlinear model predictive control [9,10], L1 adap-
tive control [11] and constraint force method [12] were
also adopted in the formation flight control problem.

The existing formation flight control methods often
adopt a two-loop control scheme including the outer-
loop formation control and the inner-loop attitude con-
trol. Under the assumption that the attitude controllers
are well designed to follow the commands generated
from the formation controllers, the inner- and outer-
loop control laws can be designed separately neglecting
the interactions between them. This assumption is sat-
isfied if the autopilot time constants are small enough,
which presents a high demand on the response speed of
the autopilots. However, this requirement can hardly be
met when the missiles are in large maneuvering flight
which is unavoidable in the formation flight control.
Moreover, designing the inner- and outer-loop con-
trollers separately is actually based on the timescale
separation of dynamics and kinematics, which will
introduce modeling errors as the systems are originally
coupled [13]. So the formation control and the attitude
control should be integrated to guarantee the closed-
loop stability for all the flight conditions. Nevertheless,
following this way, the model includes both kinematics
and dynamics of the missile, which results in a high-
order nonlinear system. This poses new challenges to
the controller design.

Since the missiles considered in this paper are con-
trolled using the bank-to-turn (BTT) technique, the
attitude angles and control surfaces of the missiles
are constrained due to the coordinated bank-to-turn
requirements and some physical limitations. This is
another motivation to integrate the two control loops.
Because the aerodynamic constraints imposed on the
missile dynamics cannot be fully covered in the design
of the formation control law if the two control loops
are designed separately. The cooperative control prob-
lem, subject to the state and actuator constraints, has
been extensively investigated. Some of them [14–16]
only considered the actuator constraints, while others
focused on handling the state constraints [17]. The non-
linearmodel predictive control (NMPC) [18] technique
is commonly employed to deal with both state and
actuator constraints for the cooperative control of non-
linear systems in the existing literatures. However, it
may not satisfy the real-time requirement of the for-
mation flight control system because the optimization
process in NMPC would be time-consuming for the
high-order aerodynamic system. Therefore, a proper
method which is suitable to tackle with the state and
actuator constraints in the cooperative control of the
high-order nonlinear systems should be proposed.

In this paper, a leader-following formation flight
control problem under a fixed directed graph is con-
sidered for multiple BTT missiles subject to the con-
straints on attitude angles and control surface deflec-
tions. Due to the complex flight conditions (e.g., elec-
tronic jamming and spoofing) and the limited commu-
nication capability of the omnidirectional antenna, it is
rather difficult to guarantee that all the followers can
obtain information directly from the leader. Thus, a
distributed scheme is applied to the leader-following
structure in this study. To be more specific, very few
followers can utilize the information of the leader in
the control law, while others can only use the infor-
mation of the neighboring followers. In addition, the
command filters [19–21] are adopted in this paper so
that the state and actuator constraints will not be vio-
lated and the real-time requirement of the formation
control problem is also satisfied.

The main contributions of this work are as follows.

– Unlike the two-loop or three-loop control scheme in
the existing works [6,7,12] on formation flight, we
proposed an integrated formation control scheme,
which can address the formation control and atti-
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tude control problems simultaneously, and guaran-
tee the closed-loop stability of the whole flight con-
trol system theoretically.

– The proposed formation control algorithm is dis-
tributed, which is suitable for missiles due to the
limited communication range. And each follower
does not need to know the whole configuration
of the formation, instead they only need to keep
the relative positions from their neighbors, which
makes the algorithm flexible and scalable.

– The proposed formation control protocol is able to
deal with the uncertain aerodynamic coefficients
in the missile dynamic systems and the aerody-
namic constraints on the attitude and control sur-
faces which stem from the BTT control mode and
some physical limitations.

The rest of this paper is organized as follows. Some
preliminaries and problem formulations are stated in
Sect. 2. A novel integrated distributed formation con-
trol scheme is proposed in Sect. 3, and the closed-loop
stability is analyzed in Sect. 4. In Sect. 5, two numerical
simulations are presented to verify the effectiveness of
the proposed control approach. Finally, the conclusions
are given in the last section.

2 Preliminaries and problem formulation

In this section, some necessary notions from the alge-
braic graph theory are briefly introduced at first. Then
the reference frames, kinematic and dynamic models
of the missiles, and B-spline neural networks, which
are employed to reconstruct the uncertain aerodynamic
coefficients, are then introduced. The formulation of
the formation control problem is given at the end of
this section.

2.1 Algebraic graph theory

In this paper, the communication topology for N fol-
lowers is represented as a directed graph G = {V, E},
whereV = {1, 2, . . . , N } is the node set and E ⊆ V×V
is the edge set. The directed edge (i, j) in E denotes
that node j can obtain information from node i . Ni =
{ j ∈ V : ( j, i) ∈ E, j �= i} is the set of neighbors of
node i . The adjacency matrixA = [ai j ] ∈ R

N×N of G
is defined such that ai j = 1 if ( j, i) ∈ E and ai j = 0
if ( j, i) /∈ E . L � D − A ∈ R

N×N is the Laplacian

matrix associated with G, where D = [di j ] ∈ R
N×N

is the in-degree matrix given as di j = 0, i �= j and
dii = ∑N

j=1 ai j , i = 1, . . . , N . The communication
topology between the N followers and the leader is
represented as an extended directed graph Ḡ = {V̄, Ē},
where V̄ = {0, 1, 2, . . . , N } (node 0 stands for the
leader) and Ē ⊆ V̄ × V̄ . The Laplacian matrix L̄ asso-
ciated with Ḡ is defined as

L̄ =
[

0 01×N

− b L + B
]

(1)

where b = [b1, . . . , bN ]T,B = diag{b1, . . . , bN }, bi
= 1 if 0 ∈ Ni and bi = 0 if 0 /∈ Ni , i = 1, 2, . . . , N .
If there is at least one node named root node which has
a directed path to all the other nodes, then the directed
graph includes a directed spanning tree. If a directed
graph has a directed spanning tree, theLaplacianmatrix
has the following property.

Lemma 1 ([22]) The Laplacian matrix of a directed
graph has a simple zero eigenvalue and all of the other
eigenvalues are in the open right half plane if and only
if the directed graph has a directed spanning tree.

2.2 Model description

The models of the N followers are described with the
aid of four reference frames in this paper: the earth-
fixed reference frame FE (A − XEYE ZE ), which is an
inertial frame with its x-axis pointing to the north, z-
axis pointing to the east; the trajectory-axis reference
frame FT (O−XT YT ZT ), transformed from FE by two
rotations of heading angle ψVi and flight path angle θi ;
the velocity-axis reference frame FV (O − XV YV ZV ),
obtained from FT by a rotation of bank angle γVi ; the
body-axis reference frame FB(O − XBYB ZB), trans-
formed from FV by two successive rotations of side-
slip angle βi and angle of attack αi . The reference
framesmentioned above are all depicted in Fig. 1.More
details about the reference frames and transformation
matrices can be found in [23].

In what follows, it is assumed that the missile is a
single rigid body, neglecting the effects of structural
deflections (aeroelasticity) and the relative motion of
the control surfaces. The air is assumed to be at rest,
neglecting any effect caused bywind. It is also assumed
that the earth is flat and the mass of the missile is con-
stant. In addition, the flight path angle θi is assumed
to satisfy |θi | < θm(θm < π

2 ) during the flight. Under
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Fig. 1 Missile reference frames

these assumptions, the 6-DOF nonlinear aerodynamic
models of the ith follower are given as follows [23].

First, the kinematic models of the follower i are

Ẋi,1 = Gi,1(Xi,2) (2)

Ẋi,2 = Hi,1 + Gi,2
(
Xi,3, Pi

)
(3)

where

Gi,1(Xi,2) =
⎡

⎣
Vi cos θi cosψVi

Vi sin θi
− Vi cos θi sinψVi

⎤

⎦ ,

Hi,1 =
⎡

⎣
− g sin θi

− g cos θi/Vi
0

⎤

⎦ ,

Gi,2(Xi,3, Pi )

=

⎡

⎢
⎢
⎣

Pi cosαi cosβi−Di
mi

Pi
(
sin αi cos γVi +cosαi sin βi sin γVi

)+Li cos γVi −Yi sin γVi
mi Vi

− Pi
(
sin αi sin γVi −cosαi sin βi cos γVi

)+Li sin γVi +Yi cos γVi
mi Vi cos θi

⎤

⎥
⎥
⎦ ,

Xi,1 = [xi , yi , zi ]T, Xi,2 = [Vi , θi , ψVi ]T, i =
1, . . . , N . xi , yi and zi are the coordinates of each mis-
sile in the earth-fixed inertial frame. Vi denotes the
velocity. θi and ψVi are used to determine the direc-
tion of Vi . Pi is the engine thrust. Di ,Yi and Li denote
the drag, side force and lift, respectively, which can be
expressed in the following form:
⎧
⎪⎨

⎪⎩

Di = qi SiCDi

Yi = qi SiCYi

Li = qi SiCLi

(4)

where qi is the dynamic pressure and Si is the aerody-
namic reference area of themissile. qi can be calculated
through qi = 1

2ρi V
2
i , where ρi is the average density

of air. CDi ,CYi and CLi are the drag, lift and side force
coefficients, respectively, which can be expressed in
terms of the aerodynamic derivatives:
⎧
⎪⎪⎨

⎪⎪⎩

CDi = CDi0(Vi ) + Cαi
Di

(αi , Vi ) |αi |
CYi = Cβi

Yi
(αi , Vi )βi

CLi = CLi0(Vi ) + Cαi
Li

(αi , Vi )αi

(5)

where CDi0 = CDi |αi=0 and CLi,0 = CLi |αi=0. C
αi
Di

is
defined as Cαi

Di
= ∂CDi /∂αi , and other coefficients are

defined similarly. These coefficients can be modeled as
functions with respect to some of the flight conditions
(i.e., αi and Vi ).

Then, the dynamic models of the follower i are

Ẋi,3 = Ai,2Fi,1 (Xi ) + Hi,2 + Bi,1Xi,4 (6)

Ẋi,4 = Ai,3Fi,2 (Xi ) + Hi,3 + Bi,2Ui (7)

where

Ai,2 = 1

mi Vi

⎡

⎣
0 0 −1/ cosβi
0 1 0
0 tan θi cos γVi tan βi + tan θi sin γVi

⎤

⎦ ,

Hi,2 = 1

mi Vi

⎡

⎣

(
mi g cos θi cos γVi − Pi sin αi

)
/ cosβi

mi g cos θi sin γVi − Pi cosαi sin βi
−mi g tan βi cos θi cos γVi + Piri

⎤

⎦ ,

Bi,1 =
⎡

⎣
− tan βi cosαi sin αi tan βi 1

sin αi cosαi 0
secβi cosαi − secβi sin αi 0

⎤

⎦ ,

Hi,3 =
⎡

⎣
(Jyi − Jzi )ωziωyi/Jxi
(Jzi − Jxi )ωxiωzi/Jyi
(Jxi − Jyi )ωyiωxi/Jzi

⎤

⎦ ,

Fi,2(Xi ) = [Mxi0, Myi0, Mzi0]T

= qi Si

⎡

⎢
⎢
⎢
⎢
⎣

li
[
mβi
xi (βi )βi + mωxi

xi (Vi )ωxi

]

li
[
mβi
yi (βi )βi + m

ωyi
yi (Vi )ωyi

]

bAi
[
mαi
zi (αi )αi + m

ωzi
zi (Vi )ωzi

]

⎤

⎥
⎥
⎥
⎥
⎦

,

Fi,1(Xi ) = [Di ,Yi , Li ]T, Ai,3 = diag{Jxi , Jyi , Jzi }−1,

ri = tan βi sin αi − tan θi cos γVi cosαi sin βi + tan θi

sin αi sin γVi , Bi,2 = qi Sidiag{mδxi
xi li/Jxi ,m

δyi
yi li/Jyi ,

mδzi
zi bAi/Jzi }, Xi,3 = [αi , βi , γVi ]T, Xi,4 =

[ωxi , ωyi , ωzi ]T, and Xi = [XT
i,1, X

T
i,2, X

T
i,3, X

T
i,4]T.

ωxi , ωyi and ωzi are the roll, yaw and pitch rates
with respect to the body-axis reference frame. Ui =
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[δxi , δyi , δzi ]T is the control surface deflection, where
δxi , δyi and δzi represent the deflections of the aileron,
rudder and elevator. li and bAi are the wing span and
wing mean aerodynamic chord, respectively. Jxi , Jyi
and Jzi are the roll, yaw and pitch moments of inertia.
m∗

xi ,m
∗
yi , and m

∗
zi are the rolling, yawing and pitching

moment coefficients, in which mβi
xi is defined as the

partial derivative of the rolling moment coefficientmxi

with respect to βi and other moment coefficients have
similar definitions. The moment coefficients can also
be regarded as the functions with respect to some of the
flight conditions (i.e., αi , βi and Vi ).

Assumption 1 The functions, representing the varia-
tion of the aerodynamic force and moment coefficients
in Eqs. (5) and (7), are continuous in certain compact
sets.

2.3 Approximation of the aerodynamic coefficients

The aerodynamic force and moment coefficients
involved in the model are uncertain, so they need to
be approximated before designing the formation con-
troller. B-spline neural network (BSNN) is suitable for
providing online aerodynamic coefficient approxima-
tion [24] due to the local support property [25] and
the flexible choice on the order of the B-splines [26].
The aerodynamic coefficients will be transformed into
linear-in-the-parameters form using B-spline functions
as the basis vectors, and then, the parameters will be
online learned by the adaptive update laws in this paper.

Since the aerodynamic coefficients which need to
be approximated have similar characteristics, we take
Cαi
Di

(αi , Vi ) inEq. (5) as an example. LetCαi
Di

be contin-
uous in a compact set ΩD, then it can be approximated
in the following form

Ĉαi
Di

(αi , Vi ) = φT
Dαi

(αi , Vi )θ̂Dαi
(8)

where θ̂Dαi
denotes the estimate of the weight vec-

tors which will be learned by the update laws and
φDαi

(αi , Vi ) is the B-spline basis vector defined as the
tensor products of two univariate B-spline basis func-
tions with respect to αi and Vi , respectively. Defined
on an interval with q equal subintervals, each univari-
ate B-spline basis function consists of (q + 2) pieces
of functions transformed from the Cardinal B-spline
functions [26]. Other coefficients can be approximated
in a similar form as Eq. (8).

The true function Cαi
Di

(αi , Vi ) can be written as

Cαi
Di

(αi , Vi ) = φT
Dαi

θ∗
Dαi

+ εDαi
(9)

where εDαi
denotes the approximation error which can

be made arbitrarily small by increasing the number of
nodes in theBSNN. θ∗

Dαi
denotes the optimal vector that

minimizes the approximation error, which is defined as

θ∗
Dαi

= argmin
θDαi

{

sup
ΩD

∣
∣
∣Cαi

Di
(αi , Vi ) − φT

Dαi
θDαi

∣
∣
∣

}

.

(10)

Therefore, Fi,1, Fi,2 and Bi,2 are reconstructed as
follows

F̂i,1 = ΦT
Fi,1

Θ̂Fi,1

= diag
{
φT
Di

, φT
Yi

, φT
Li

} [
θ̂TDi

, θ̂TYi
, θ̂TLi

]T
(11)

F̂i,2 = ΦT
Fi,2

Θ̂Fi,2

= diag
{
φT
Mxi0

, φT
Myi0

, φT
Mzi0

} [
θ̂TMxi0

, θ̂TMyi0
, θ̂TMzi0

]T

(12)

B̂i,2 = ΦT
Bi,2

Θ̂Bi,2

= diag

{

φT
M

δxi
xi

, φT

M
δyi
yi

, φT

M
δzi
zi

}

diag

{

θ̂
M

δxi
xi

, θ̂
M

δyi
yi

, θ̂
M

δzi
zi

}

(13)

where φT
Di

= qi Si [φT
Di0

, φT
Dαi

|αi |], θ̂Di =
[θ̂TDi0

, θ̂TDαi
]T, and other φ∗s and θ̂∗s have similar defini-

tions according to Eqs. (5) and (7). Moreover, the opti-
mal weight vectors Θ∗

Fi,1
,Θ∗

Fi,2
and Θ∗

Bi,2 j
exist such

that the following inequalities hold.
∥
∥
∥Fi,1 − ΦT

Fi,1
Θ∗

Fi,1

∥
∥
∥ =

∥
∥
∥EFi,1

∥
∥
∥ � ei,1 (14)

∥
∥
∥Fi,2 − ΦT

Fi,2
Θ∗

Fi,2

∥
∥
∥ =

∥
∥
∥EFi,2

∥
∥
∥ � ei,2 (15)

∥
∥
∥Bi,2 j − ΦT

Bi,2 j
Θ∗

Bi,2 j

∥
∥
∥ =

∥
∥
∥EBi,2 j

∥
∥
∥ � ei,3 j j = 1, 2, 3

(16)

where EFi,1 , EFi,2 and EBi,2 j are the reconstruction
errors, which are bounded over the compact sets
ΩFi,1 ,ΩFi,2 andΩBi,2 j , respectively. The upper bounds
ei,1, ei,2 and ei,3 j are positive constants.

2.4 Problem formulation

Since the missile formation and attitude control are to
be integrated to cope with the large maneuvering flight
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condition, the kinematic models (2)–(3) and dynamic
models (6)–(7) will be considered together as a fourth-
order nonlinear system. Meanwhile, we notice that this
nonlinear system is in a quasi strict-feedback form
which inspires us to adopt the distributed backstep-
ping scheme to address this problem. In this manner,
the fourth-order nonlinear system will be treated as
four nonlinear subsystems and the distributed forma-
tion control protocol is designed in a recursive way.

For a BTT missile, the most significant constraint is
the allowable side-slip angle which should be kept in
a small region around zero. Ideally, the side-slip angle
should be zero, which would lead to completely coor-
dinated turns. In addition, the angular rates and control
surface deflections are constrained due to some phys-
ical limitations, and the other attitude angles are also
limited to meet the requirements of BTT control mode,
which will be discussed later in Sect. 3.

Let yi = Xi,1 be the output of the i th follower.
Then the formation tracking error e f for the missile
team composed of one leader and N followers can be
defined as

e f = y − yd − (1N ⊗ r) (17)

where y = [yT1 , . . . , yTN ]T, yd = [(yd1r )T, . . . ,

(ydNr )
T]T, ydir ∈ R

3 (i = 1, . . . , N ) denotes the posi-
tion of follower i relative to the leader in the predeter-
mined formation, and 1N is a N × 1 column vector of
ones. If e f can be controlled to be zero, the followers
will maintain the predetermined formation and follow
the trajectory of the leader precisely.

Therefore, the objective of this paper is to design a
distributed formation control law (including the con-
trol surface deflection Ui and the thrust Pi ) for each
follower, such that the formation tracking error e f con-
verges into a small region around zero, while the atti-
tude angles Xi,3, angular rates Xi,4 and control surfaces
Ui are restricted in the compact sets ΩXi,3 ,ΩXi,4 and
ΩUi ⊂ R3, respectively.

Assumption 2 The trajectory of the leader r(t) and its
first derivative ṙ(t) are continuous and bounded. The
extended graph Ḡ contains a directed spanning tree.

3 Distributed formation controller design

In the integrated control scheme, the most challeng-
ing problem is that the leader-following formation fly-

ing and attitude control should be handled simultane-
ously. In other words, a high-order nonlinear cooper-
ative control problem should be addressed. To solve
this problem, an integrated distributed backstepping-
based formation control method will be proposed in
this section. In this integrated control method, the dis-
tributed formation virtual controller will be constructed
to maintain a stable formation structure with respect to
the first subsystem, and other subsystems are utilized
to design controllers to guarantee that the commanded
velocity, attitude angles and angular rates are accurately
achieved. In each step, the virtual controllers will pass
though the command filters to generate proper com-
mand states or control inputs, which satisfy the state
constraints and actuator saturations, respectively. The
additional compensating signals are used to compen-
sate the errors resulting from the command filters and
the disorder between the inner- and outer-loop control
in large maneuvering flight.
Step 1: To derive a distributed formation controller, the
communication topology information should be intro-
duced into the formation tracking error, so that e f will
be decentralized in the following form

Z1 = [(L + B) ⊗ I3][y − yd − (1N ⊗ r)] (18)

where Z1 = [ZT
1,1, . . . , Z

T
N ,1]T is the decentralized

form of e f for all the followers, I3 denotes a three-
dimensional identitymatrix, andB= diag{b1, . . . , bN },
in which bi = 1, i = 1, . . . , N , if the follower i can
obtain information from the leader directly and bi = 0,
otherwise.

FromAssumption 2, the communication topology Ḡ
contains a directed spanning tree, so the rank of L̄ is N
according to Lemma 1. Since Rank([−b L + B]) =
N and the sum of all the column vectors of matrix
[−b L+B] equals to 0N , where 0N is a N ×1 column
vector of zeros, L+ B is invertible. Therefore, we can
stabilize Z1 instead of e f because e f = [(L + B) ⊗
I3]−1Z1.

According to Eq. (18), the formation tracking error
corresponding to the i th follower can be expressed as

Zi,1 =
∑

j∈Ni

ai j
(
yi − y j − ydi j

)
+ bi

(
yi − r − ydir

)

(19)

where ydi j ∈ R
3 denotes the position of follower i rel-

ative to the follower j in the predetermined formation,
r = [rx , ry, rz]T represents the position of the leader
and Ni stands for the neighbor set of follower i . ai j is
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the element of the adjacencymatrix of graphG. ai j = 1
means follower i can receive information from follower
j . If follower i cannot obtain information from follower
j, ai j = 0. With this term, Zi,1 only contains the for-
mation tracking errors with respect to the follower i’s
neighbors.

Taking the time derivative of Zi,1, we obtain

Żi,1 = (bi + dii )Gi,1(Xi,2)

−
∑

j∈Ni

ai j G j,1(X j,2) − bi ṙ (20)

where dii =∑N
j=1 ai j , i = 1, . . . , N .

To stabilize Zi,1, the virtual controller Xd
i,2 for the

i th follower is designed as

Gi,1(X
d
i,2) = (gi,11, gi,12, gi,13)

T

= − Ki,1Zi,1 +∑ j∈Ni
ai j G j,1(X j,2) + bi ṙ

bi + dii
(21)

where Ki,1 is a diagonal positive definite matrix. This
virtual controller is distributed since it only uses the
neighbors’ information of follower i and the infor-
mation of the leader if possible. With the condition
that the flight path angle θi ∈ (−π/2, π/2) and the
heading angle ψVi ∈ (−π, π ], the components of
Xd
i,2 = (V d

i , θdi , ψd
Vi

)T can be determined according
to

V d
i =

√
g2i,11 + g2i,12 + g2i,13 (22)

ψd
Vi =

⎧
⎪⎨

⎪⎩

− arctan (gi,13/gi,11) if gi,11 > 0

−π − arctan (gi,13/gi,11) if gi,11 < 0, gi,13 > 0

π − arctan (gi,13/gi,11) if gi,11 < 0, gi,13 < 0

(23)

θdi = arctan
gi,12

√
g2i,11 + g2i,13

. (24)

For this high-order nonlinear system, the analytical
expression of Ẋd

i,2 contains complicated partial deriva-
tive terms, which will result in the explosion of com-
plexity problem. To avoid this, the command filter tech-
nique is adopted to estimate Ẋd

i,2. In this paper, the fol-
lowing second-order command filter [27] is used.

ẍ c = ω2
n

[
SM (xo) − xc

]− 2ζωn ẋ
c (25)

SM (x) =

⎧
⎪⎨

⎪⎩

Mmax x � Mmax

x Mmin < x < Mmax

−Mmin x � −Mmin

(26)

where xo is the input of the command filter, ẋ c and
xc are the output, and ζ and ωn represent the damping
factor and the frequency, respectively. If the state Xi,2 is
limited, it is reasonable that the desired state Xd

i,2 has
the same limits. Thus, the magnitude limit function,
denoted by SM (·), is included in Eq. (25). The limits
can be set to be infinity if no constraint is imposed on
the state.

Note that if xo is bounded, then xc and ẋ c are
bounded and continuous. In the linear range of the func-
tion SM (·), the transfer function for the command filter
from xo to xc is a second-order linear filter with unit
dc gain defined as

Xc(s)

Xo(s)
= ω2

n

s2 + 2ζωn + ω2
n
. (27)

Thus, when the limit functions are not in effect, the
error xc−xo can be made arbitrarily small by selecting
ωn to be sufficiently large.When the limit functions are
in effect, the error xc − xo is bounded because both xc

and xo are bounded.
Xc
i,2 and Ẋ c

i,2, derived from passing Xd
i,2 through the

command filter, are the command state of Xi,2 and its
derivative, respectively. Then in order to eliminate the
effect of the difference between Xc

i,2 and Xd
i,2 appeared

when the limit functions in the command filter come
into effect, the compensating signal ξi,1 is introduced
as

ξ̇i,1 = − K1ξi,1 + (bi + dii )[Gi,1(Xi,2)

−Gi,1(X
d
i,2)]. (28)

Thus, Zi,1 is modified to Z̄i,1 = Zi,1−ξi,1, which is
called the compensated formation tracking error. Dif-
ferentiating Z̄i,1 and substituting Eqs. (21) and (28)
into it, we get

˙̄Zi,1 = −Ki,1 Z̄i,1. (29)

Step 2: In this step, the virtual controller Xd
i,3 =

(αd
i , βd

i , γ d
Vi

)T and thrust Pi will be designed to elim-
inate the tracking errors of the velocity and its orien-
tation angles for the i th follower defined by Zi,2 =
Xi,2 − Xc

i,2.
The time derivative of Zi,2 is

Żi,2 = Hi,1 + Gi,2(Xi,3, Pi ) − Ẋ c
i,2

= Hi,1 + Ĝi,2

(
Xd
i,3, Pi

)

+ Ĝi,2(Xi,3, Pi ) − Ĝi,2

(
Xd
i,3, Pi

)

+ Ai,1 F̃i,1 − Ẋ c
i,2

(30)
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where Ai,1 F̃i,1 = Gi,2(Xi,3, Pi ) − Ĝi,2(Xi,3, Pi ),

Ai,1 = 1

miVi

⎡

⎢
⎢
⎣

−Vi 0 0
0 − sin γVi cos γVi

0 −cos γVi

cos θi
− sin γVi

cos θi

⎤

⎥
⎥
⎦ , (31)

F̃i,1 = Fi,1 − F̂i,1 = ΦT
Fi,1Θ

∗
Fi,1 + EFi,1 − ΦT

Fi,1Θ̂Fi,1

= ΦT
Fi,1Θ̃Fi,1 + EFi,1 . (32)

Select Ĝi,2(Xd
i,3, Pi ) = (gi,21, gi,22, gi,23)T such

that

Ĝi,2

(
Xd
i,3, Pi

)
= − Hi,1 + Ẋ c

i,2 − Ki,2Zi,2 − 1

2
Z̄i,2

=

⎡

⎢
⎢
⎢
⎢
⎣

Pi cosαd
i cosβd

i −D̂i
mi

Pi
(
sin αd

i cos γ d
Vi

+wi

)
+L̂i cos γ d

Vi
−Ŷi sin γ d

Vi
mi Vi

− Pi
(
sin αd

i sin γ d
Vi

−wi

)
+L̂i sin γ d

Vi
+Ŷi cos γ d

Vi
mi Vi cos θi

⎤

⎥
⎥
⎥
⎥
⎦

(33)

where wi = cosαd
i sin βd

i sin γ d
Vi

, Ki,2 is a diagonal

positive definite matrix, Z̄i,2 = Zi,2 − ξi,2 is the com-
pensated tracking error of Xi,2, and ξi,2 is the compen-
sating signal which will be defined in Eq. (39).

Remark 1 In controller (33), the compensating signal
ξi,2 actually serves as the feedback from the attitude
control which will be discussed in the next step, so
that the formation controller and attitude controller are
integrated in this manner.

Since Pi and Xd
i,3 are not affine in Ĝi,2, we will

derive them according to Eq. (33). Note that, to achieve
a coordinated turn for BTT missile, the desired side-
slip angle βd

i should be set to zero. Therefore, it is
reasonable to set sin βd

i = 0 and Ŷi = 0 in Eq. (33).

And since D̂i and L̂i can be decomposed as D̂i =
D̂i0 + D̂αi |αd

i | and L̂i = L̂i0 + L̂αi α
d
i according to

Eqs. (4) and (5), we can get

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

gi,21 = 1

mi

(
Pi cosαdi − D̂i0 − D̂αi |αdi |

)

gi,22 = 1

mi Vi

[(
L̂i0 + L̂αi α

d
i + Pi sin αi

d
)
cos γ d

Vi

]

gi,23 = − 1

mi Vi cos θi

[(
L̂i0 + L̂αi α

d
i + Pi sin αi

d
)
sin γ d

Vi

]
.

(34)

The missile we considered in this paper uses BTT
90 airframe, in which the lifting surface can be com-
manded to roll up to ± 90◦. Then γ d

Vi
, αi

d and Pi will

be derived through

γ d
Vi =

⎧
⎪⎨

⎪⎩

−π/2 if gi,x = 0, gi,y < 0

π/2 if gi,x = 0, gi,y > 0

arctan(gi,y/gi,x ) otherwise.

(35)

tan αd
i

[
mi gi,21 + D̂

(
αd
i

)]
+ L̂(αd

i ) = mi gi,22Vi
cos γ d

Vi

(36)

Pi = migi,21 + D̂
(
αd
i

)

cosαd
i

(37)

where gi,x = gi,22miVi , gi,y = −gi,23miVi cos θi ,

D̂(αd
i ) = D̂i0 + D̂αi |αd

i | and L̂(αd
i ) = L̂i0 + L̂αi α

d
i .

Note that the intermediate control variable αd
i can be

obtained through numerically solving Eq. (36) accord-
ing to the method in [28]. After obtaining αd

i , Pi can
be calculated by substituting αd

i into Eq. (37).
Then substituting Eqs. (33) into (30), we have

Żi,2 = − Ki,2Zi,2 + Ai,1 F̃i,1 + Ĝi,2(Xi,3, Pi )

− Ĝi,2

(
Xd
i,3, Pi

)
− 0.5Z̄i,2.

(38)

According to Eq. (6), if ωxi is too large, αi should be
restricted to make β̇i relatively small which enables the
real value of βi to stay in a small region around zero
so that the roll and pitch channels are decoupled. Xc

i,3

and Ẋ c
i,3 can be derived by passing Xd

i,3 though the

command filter in which Xd
i,3 is modified to meet the

aforementioned constraints on Xi,3. The corresponding
compensating signal ξi,2 is defined as

ξ̇i,2 = −Ki,2ξi,2 + Ĝi,2(Xi,3, Pi ) − Ĝi,2

(
Xd
i,3, Pi

)
.

(39)

Thus, using Eqs. (30) and (39), the derivative of Z̄i,2

is given by

˙̄Zi,2 = −(Ki,2 + 0.5I3)Z̄i,2 + Ai,1 F̃i,1. (40)

Step 3: In order to achieve the desired attitude Xc
i,3, the

required angular rates Xd
i,4 = (ωd

xi , ω
d
yi , ω

d
zi )

T will be
designed in this step. The tracking error of the attitude
is defined as Zi,3 = Xi,3−Xc

i,3. Using Eq. (6), the time
derivative of Zi,3 is

Żi,3 = Ai,2Fi,1 + Hi,2 + Bi,1Xi,4 − Ẋ c
i,3. (41)

To stabilize Zi,3, the virtual controller Xd
i,4 is

designed as follows
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Xd
i,4 = B−1

i,1

(
−Ai,2 F̂i,1 − Hi,2 − Ki,3Zi,3

+ Ẋ c
i,3 − 1

2
Z̄i,3

)

(42)

where Ki,3 is a diagonal positive definitematrix, Z̄i,3 =
Zi,3 − ξi,3, and Bi,1 is nonsingular because |Bi,1| =
− secβi and βi is guaranteed to stay in a small region
around zero in step 2.

Now we will derive Xc
i,4 and Ẋ c

i,4 by passing Xd
i,4

though the command filter defined in Eq. (25), in which
Xd
i,4 ismodified to satisfy the limits of the angular rates.

Then the third compensator of the command filter is
defined as

ξ̇i,3 = −Ki,3ξi,3 + Bi,1ξi,4 + Bi,1
(
Xc
i,4 − Xd

i,4

)
.

(43)

Taking derivative of Z̄i,3 and substituting Eqs.(41),
(42) and (43) into it, we have

˙̄Zi,3 = −(Ki,3 + 0.5I3)Z̄i,3 + Ai,2 F̃i,1 + Bi,1 Z̄i,4.

(44)

Step 4: In the final step, the desired angular rate Xc
i,4

will be achieved by directly manipulating the control
surfaces of the missile (i.e., δxi , δyi and δzi ). Taking
time derivative of the angular rate tracking error Zi,4 =
Xi,4 − Xc

i,4 gives

Żi,4 = Ai,3Fi,2 + Hi,3 + Bi,2Ui − Ẋ c
i,4. (45)

Since B̂i,2 is nonsingular, the control law can be
constructed as

Ud
i = B̂−1

i,2

(
−Ki,4Zi,4 − Ai,3 F̂i,2 − Hi,3

+ Ẋ c
i,4 − BT

i,1 Z̄i,3 − 2Z̄i,4

) (46)

where Ki,4 is a diagonal positive definite matrix and
Z̄i,4 = Zi,4 − ξi,4 is the compensated tracking error of
angular rate.

The desired control law (46) may not be applica-
ble for the actuators due to the physical limitations on
the servomotors. Hence, the executable control surface
deflection Ui will be obtained by passing Ud

i through
the fourth command filter. And the corresponding com-
pensating signal ξi,4 is defined as

ξ̇i,4 = −Ki,4ξi,4 + B̂i,2
(
Ui −Ud

i

)
. (47)

With Eqs. (45)–(47), ˙̄Zi,4 is given by

˙̄Zi,4 = −(Ki,4 + 2I3)Z̄i,4 + Ai,3 F̃i,2

+ B̃i,2Ui − BT
i,1 Z̄i,3 (48)

Remark 2 The controllers (33), (42) and (46), which
are dedicated to track the command velocity, attitude
angles and angular rates, only depend on the follower
i’s own states. So all the control laws designed in this
section are distributed.

4 Stability analysis

Based on the analysis above, we will give the follow-
ing theorem which indicates that the proposed inte-
grated formation controllers can guarantee the closed-
loop stability of the whole formation flight control sys-
tem theoretically.

Theorem 1 Under Assumptions 1 and 2, consider a
team of agents including a leader and N followers
described by (2), (3), (6) and (7). With the distributed
control laws (21), (33), (42) and (46), command filters
(25) and adaptive tuning laws

˙̂
ΘFi,1 = ΓFi,1

[
ΦFi,1

(
AT
i,1 Z̄i,2 + AT

i,2 Z̄i,3

)
− μFi,1Θ̂Fi,1

]

(49)
˙̂

ΘFi,2 = ΓFi,2

(
ΦFi,2 A

T
i,3 Z̄i,4 − μFi,2 Θ̂Fi,2

)
(50)

˙̂
ΘBi,2 j = ΓBi,2 j

(
ΦBi,2 j Z̄i,4ui, j − μBi,2 j Θ̂Bi,2 j

)
(51)

where μFi,1 , μFi,2 , μBi,2 j (i = 1, . . . , N , j = 1, 2, 3)
are small positive constants, the weight parame-
ter errors Θ̃Fi,1 , Θ̃Fi,2 , Θ̃Bi,2 j and the tracking errors
Zi,l(l = 1, . . . , 4) for the i th follower are coop-
eratively semi-globally uniformly ultimately bounded
(CSUUB). Furthermore, the formation tracking errors
of all the followers will converge into a small neigh-
borhood around zero by a proper choice of the control
parameters.

Proof The Lyapunov function for the i th follower is
chosen as

Vi = 1

2

⎛

⎝
4∑

k=1

Z̄T
i,k Z̄i,k +

3∑

j=1

Θ̃T
Bi,2 j Γ

−1
Bi,2 j

Θ̃Bi,2 j

+
2∑

l=1

Θ̃T
Fi,lΓ

−1
Fi,l

Θ̃Fi,l

)

.

(52)
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Taking time derivative of Vi and substituting Eqs.
(29), (40), (44) and (48) into it, we have

V̇i = −
4∑

k=1

Z̄T
i,k Ki,k Z̄i,k +

(
Z̄T
i,2Ai,1 + Z̄T

i,3Ai,2
)
EFi,1

+ Θ̃T
Fi,1

[
ΦFi,1

(
ATi,1 Z̄i,2 + ATi,2 Z̄i,3

)
− Γ −1

Fi,1
˙̂

ΘFi,1

]

+ Θ̃T
Fi,2

(
ΦFi,2 A

T
i,3 Z̄i,4 − Γ −1

Fi,2
˙̂

ΘFi,2

)

+ Z̄T
i,4Ai,3EFi,2

+ Z̄T
i,4

3∑

j=1

EBi,2 j ui, j − 0.5
(∥
∥Z̄i,2

∥
∥2

+ ∥∥Z̄i,3
∥
∥2
)

− 2
∥
∥Z̄i,4

∥
∥2

+
3∑

j=1

Θ̃T
Bi,2 j

(
ΦBi,2 j Z̄i,4ui, j − Γ −1

Bi,2 j
˙̂

ΘBi,2 j

)
.

(53)

Then, substituting the adaptive tuning laws (49)–
(51) into Eq. (53) gives

V̇i = −
4∑

k=1

Z̄T
i,k Ki,k Z̄i,k +

(
Z̄T
i,2Ai,1

+ Z̄T
i,3Ai,2

)
EFi,1 + Z̄T

i,4

3∑

j=1

EBi,2 j ui, j

− 0.5
(∥
∥Z̄i,2

∥
∥2 + ∥∥Z̄i,3

∥
∥2
)

− 2
∥
∥Z̄i,4

∥
∥2

+ Z̄T
i,4Ai,3EFi,2 + μFi,1Θ̃

T
Fi,1Θ̂Fi,1

+ μFi,2Θ̃
T
Fi,2Θ̂Fi,2

+
3∑

j=1

μBi,2 j Θ̃
T
Bi,2 j Θ̂Bi,2 j .

(54)

According to Young’s inequality, the following
inequality holds
(
Z̄T
i,2Ai,1 + Z̄T

i,3Ai,2

)
EFi,1

� 0.5
(∥
∥Z̄i,2

∥
∥2 + ∥∥Z̄i,3

∥
∥2

+ ∥∥Ai,1EFi,1

∥
∥2 + ∥∥Ai,2EFi,1

∥
∥2
)

, (55)

Z̄T
i,4

⎛

⎝
3∑

j=1

EBi,2 j ui, j + Ai,3EFi,2

⎞

⎠

� 2
∥
∥Z̄i,4

∥
∥2 + 1.5

3∑

j=1

∥
∥EBi,2 j ui, j

∥
∥2

+ 0.5
∥
∥Ai,3EFi,2

∥
∥2 . (56)

With Cauchy–Schwarz inequality, we have

μFi,1Θ̃
T
Fi,1Θ̂Fi,1 � μFi,1

(
‖Θ̃Fi,1‖‖Θ∗

Fi,1‖ − ‖Θ̃Fi,1‖2
)

�
μFi,1

2

(
‖Θ∗

Fi,1‖2−‖Θ̃Fi,1‖2
)

, (57)

μFi,2Θ̃
T
Fi,2Θ̂Fi,2 �

μFi,2

2

(
‖Θ∗

Fi,2‖2 − ‖Θ̃Fi,2‖2
)

, (58)

μBi,2 j Θ̃
T
Bi,2 j Θ̂Bi,2 j �

μBi,2 j

(
‖Θ∗

Bi,2 j
‖2 − ‖Θ̃Bi,2 j ‖2

)

2
.

(59)

Then, substituting Eqs. (55)–(59) into Eq. (54), it
follows that

V̇i � −
4∑

l=1

Z̄T
i,l Ki,l Z̄i,l − μFi,1

2
‖Θ̃Fi,1‖2

− μFi,2

2
‖Θ̃Fi,2‖2 − 1

2

3∑

j=1

μBi,2 j ‖Θ̃Bi,2 j ‖2 + Qi

(60)

where Qi = 0.5(μFi,1ρFi,1 + μFi,2ρFi,2 +
∑3

j=1 μBi,2 j ρBi,2 j +ρi ), ρFi,1 = max{‖Θ∗
Fi,1

‖2}, ρFi,2

= max{‖Θ∗
Fi,2

‖2}, ρBi,2 j = max{‖Θ∗
Bi,2 j

‖2}, ρi =
max{∥∥Ai,1EFi,1

∥
∥2 + ∥

∥Ai,2EFi,1

∥
∥2 + ∥

∥Ai,3EFi,2

∥
∥2

+∑3
j=1

∥
∥EBi,2 j ui, j

∥
∥2}

Assumption 1 implies that the optimal weight vec-
tors Θ∗

Fi,1
,Θ∗

Fi,2
and Θ∗

Bi,2 j
are bounded, so ρFi,1 , ρFi,2

and ρBi,2 j exist. ρi exists since the side-slip angle βi
is guaranteed to be small near 0, Ui is bounded, and
the reconstruction errors EFi,1 , EFi,2 and EBi,2 j are
bounded.

Define

k∗
i,l = 2λmin{Ki,l }, γ ∗

Fi,1
= λmax

{
Γ −1
Fi,1

}
,

γ ∗
Fi,2

= λmax

{
Γ −1
Fi,2

}
, γ ∗

Bi,2 j
= λmax

{
Γ −1
Bi,2 j

}
,

ηi = min
{
k∗
i,l , μFi,1/γ

∗
Fi,1

, μFi,1/γ
∗
Fi,1

, μBi,2 j /γ
∗
Bi,2 j

}
(61)

where i = 1, . . . , N , j = 1, 2, 3, l = 1, . . . , 4, λmin{·}
and λmax{·} denote the smallest and largest eigenvalue
of a matrix, respectively. Then, from Eq. (60), we have

V̇i � −ηi Vi + Qi (62)
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Since the Lyapunov function V for all the followers
can be chosen asV =∑N

i=1 Vi , it follows fromEq. (62)
that

V̇ � −ηV + Q (63)

where η = min{ηi } and Q =∑N
i=1 Qi .

According to Eq. (60), Z̄i,l and Θ̃
 will converge

into the domain Ωz̄i,l =
{
Z̄i,l

∣
∣
∣‖Z̄i,l‖ <

√
2Qi
k∗
i,l

}
(i =

1, . . . , N , l = 1, . . . , 4) and Ωθ̃

=
{
Θ̃


∣
∣
∣‖Θ̃
‖ <

√
2Q
μ


}
(
 = Fi,1, Fi,2, Bi,2 j , j =

1, 2, 3), respectively. Therefore, Z̄i,l and Θ̃
 are
CSUUB.

The command filter compensators, described by
Eqs. (28), (39), (43) and (47), are actually BIBO sta-
ble linear filters. Since each input of these filters are
bounded, the output of these filters are bounded as well
(i.e., the signals ξi,l , i = 1, . . . , N , l = 1, . . . , 4, are
bounded). Therefore, the actual tracking errors Zi,l are
also CSUUB.

From Eq. (63), we can derive that

0 � V (t) � Q

η
+
[

V (0) − Q

η

]

e−ηt

<
Q

η
+ V (0)e−ηt . (64)

Combined with Eq. (52), the following inequality is
satisfied

1

2
‖Z̄1‖2 < V (t) <

Q

η
+ V (0)e−ηt . (65)

where Z̄1 = [Z̄T
1,1, . . . , Z̄

T
N ,1]T. This implies that

for σ >
√

(2Q/η) there exists T such that for all
t ≥ T, Z̄1 satisfies ‖Z̄1‖ < σ . The convergence
domain factor σ depends on the controller parameters
(Ki,l , Γ
, μ
,
 = Fi,1, Fi,2, Bi,2 j ) and the BSNN
reconstruction errors E
,
 = Fi,1, Fi,2, Bi,2 j . There-
fore, to achieve better formation control performance,
we can increase λmin{Ki,l} and λmin{Γ
}, and apply
BSNN with more nodes.

The formation tracking error of all the followers,
defined in Eq. (17), satisfies

‖e f ‖ = ‖A−1
LB Z1‖ � ‖A−1

LB‖‖Z1‖

�
√

λmax

{
(A−1

LB)TA−1
LB

}
(‖Z̄1‖ + ‖ξ1‖)

(66)

where ALB = (L+B)⊗ I3 and ξ1 = [ξT1,1, . . . , ξTN ,1]T.
If the limit functions of the command filters are not in

Fig. 2 Communication
topology and desired
formation structure

effect, ‖ξ1‖will converge to zero. Therefore, the forma-
tion tracking error of all the followers can be reduced
by choosing control parameters properly. �

5 Numerical simulation

In this section, a numerical simulation under the pro-
posed formation controller is first conducted to illus-
trate the effectiveness of the proposed algorithm. Then
a two-loop formation control method is implement
under the same condition for comparison.Wewill show
that the performance of the integrated formation con-
trol scheme is better than the two-loop one in large
maneuvering flight.

Consider a missile formation with one leader and
three followers. As depicted in Fig. 2, the communica-
tion topology is a simple directed spanning tree denoted
by the solid arrows and the desired formation structure
is defined as a regular tetrahedron with each edge being
100 m. Derived from the path planning algorithm and
the PN guidance law, the trajectory of the leader is
...
r x (t) = 0,

...
r y(t) = 0

...
r z(t) =

⎧
⎪⎨

⎪⎩

10 0 s < t � 2 s, 14 s < t � 16 s

−10 6 s < t � 10 s

0 otherwise.

(67)

where the initial values are r(0) = (0, 100, 3081.65)T,

ṙ(0) = (250, 50, 0)T and r̈(0) = (0, 0, 0)T.
Each follower has the same nominal parameters

which are listed in Table 1. The average air den-
sity ρi is calculated by ρi = 1.225(1 − hi

44300 )
4.2533,

where hi is the flight altitude of the i th follower.
The initial positions of three followers are X1,1 =
(10, 90, 3000)T, X2,1 = (− 38.9, 60, 3010)T and
X3,1 = (− 38.9, 80, 2960)T. The initial velocity, flight
path angle and heading angle of each follower are,
respectively, set as Vi (0) = 254 m/s, θi (0) = 11.3◦
and ψVi (0) = 0◦. The initial angle of attack, side-
slip angle and bank angle are, respectively, set as
αi (0) = 3◦, βi (0) = γVi (0) = 0◦. The initial angu-
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Table 1 Nominal parameters of follower i

Parameter Value Parameter Value

mi 400 kg g 9.8 kg/m2

li 0.5m bAi 0.4m

Si 0.52m2 Jxi 100 kgm2

Jyi 1300 kgm2 Jzi 1200 kgm2

Table 2 Initial values of the estimated coefficients

Coefficient Value Coefficient Value

ĈDi 0(0) 0.05 Ĉα
Di

(0) 4.9

Ĉβ
Yi

(0) −1.9 ĈLi0 (0) 0.1

Ĉα
Li

(0) 2.4 m̂βi
xi (0) − 0.3

m̂ωxi
xi (0) −0.29 m̂δxi

xi (0) 16

m̂βi
yi (0) −14.5 m̂

ωyi
yi (0) − 2.9

m̂
δyi
yi (0) −17 m̂αi

zi (0) − 18.7

m̂ωzi
zi (0) −2.9 m̂δzi

zi (0) − 24

lar rates and control surface deflections are all set as
zero.

The third-order B-Spline functions are used as the
basis functions of BSNN for each follower. In order to
construct the basis functions,we set that the range of the
angle of attack αi is [− 8◦, 12◦] with 11 knots spaced
every 2◦; the range of the side-slip angle βi is [−5◦, 5◦]
with 6 knots spaced every 2◦; the speed Vi , expressed in
Mach numbers, is in the range of [0.5, 0.9]with 5 knots
spaced every 0.1Ma. The third-order spline basis func-
tions with n nodes consist of (n + 1) pieces. The coef-
ficient CDi0(Vi ) is approximated by BSNN with uni-
variate B-spline basis functions owning 6 nodes in the
hidden layer. The coefficient Cαi

Di
(αi , Vi ) is approxi-

mated byBSNNwith bivariate B-spline basis functions
whose hidden layer is of 72 nodes. Other coefficients
are approximated similarly. The aerodynamic data we
use in this simulation come from [29]. The initial values
of the estimated aerodynamic coefficients are displayed
in Table 2. Each aerodynamic coefficient has + 10%
uncertainty in the form of C∗(t) sin( t5 ), where C∗(t) is
a generic marker to represent any of the aerodynamic
coefficients.

The ωn in four command filters are selected as
(15, 10, 10)T, (25, 20, 20)T, (35, 35, 35)T and
(40, 40, 40)T. The damping factor in each filter is

Table 3 Constraints on states and control surfaces

Variable Magnitude limit

αi [− 8, 12] deg
βi [− 5, 5] deg
γVi [− 90, 90] deg
ωxi [− 130, 130] deg/s
ωyi , ωzi [− 30, 30] deg/s
δxi , δyi , δzi [− 15, 15] deg

0.707. The constraints on the states and control surfaces
adopted in the command filters are listed in Table 3.

The control parameters for three followers are
chosen as K1,1 = diag(1, 1.3, 1.2), K2,1 = diag
(1.3, 1.6, 1), K3,1 = diag(1.2, 1.5, 1.2), K1,2 = diag
(1.9, 0.7, 0.6), K2,2 = diag(2, 0.9, 0.4), K3,2 = diag
(2.2, 0.8, 0.6), K1,3 = K2,3 = K3,3 = diag(3, 3, 3),
and K1,4 = K2,4 = K3,4 = diag(5, 5, 5). Set
μFi,1 = 0.03, μFi,2 = μBi,21 = μBi,22 = 0.01, and
μBi,23 = 0.001, for i = 1, 2, 3. And choose ΓFi,1 =
diag{100 · 1T78 , 900 · 1T72, 100 · 1T6 , 700 · 1T72}, ΓFi,2 =
diag{100 · 1T7 , 40 · 1T6 , 80 · 1T31}, and ΓBi,21 = ΓBi,22 =
ΓBi,23 = 50I18 (i = 1, 2, 3).

Under the proposed formation control law with the
above parameters, the trajectories of eachmissile in the
formation are plotted in Fig. 3. The leader flies at the
high trajectory, while the three followers fly at lower
trajectories in the same plane. Figure 4 illustrates that
the followers can form and maintain the desired forma-
tion structure. As depicted in Figs. 5 and 6, the position
and velocity tracking errors of each follower converge
to zero which reveals that the three followers are capa-
ble of following the trajectory of the leader precisely.
So we can conclude that the followers are able to fol-
low the leader while maintaining a predetermined for-
mation under the control of the proposed distributed
controller.

Benefiting from the use of command filters, the atti-
tude angles and angular rates of three followers, shown
in Figs. 7 and 8, satisfy their own constraints which are
listed in Table 3. Meanwhile, it is worth noting that the
side-slip anglesβi (depicted in Fig. 7b) are successfully
stabilized near 0◦, so that the coordinated turn is able
to be achieved. The control surface deflections δxi , δyi
and δzi , plotted in Fig. 9, are not more than 15◦ in both
directions, which indicates that the physical limitations
of servo motors are satisfied.
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Fig. 3 Trajectory of the formation flying

0 5 10 15 20 25
50

60

70

80

90

100

110

120

130

Time (s)

D
is

ta
nc

e 
(m

)

 

 

Distance between follower 1 and 2
Distance between follower 2 and 3
Distance between follower 1 and 3
Distance between the leader and follower 1
Distance between the leader and follower 2
Distance between the leader and follower 3

Fig. 4 Distance between each two missiles in the formation
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Fig. 5 Position tracking errors of three followers

Then another simulation is conducted using the con-
straint force (CF) formation control method in [12]
under the same initial conditions mentioned before.
The CF method adopts a two-loop formation control
scheme, and its simulation results are presented in
Figs. 10, 11 and 12. Compared with Figs. 4, 5 and 6, we
notice that the plots of the position andvelocity tracking
errors in Figs. 11 and 12 have larger overshoots over the
period from 10 to 16s, when the formation is desired to

0 5 10 15 20 25
−80

−60

−40

−20

0

20

40

Time (s)

Ve
lo

ci
ty

 tr
ac

ki
ng

 e
rro

r (
m

/s
)

Follower 1
Follower 2
Follower 3

Fig. 6 Velocity tracking errors of three followers
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Fig. 7 Attitude angles of followers. aAngle of attack,b side-slip
angle, c bank angle

make a turn. This is because the inner-loop controllers
are not able to track the attitude angle commands gen-
erated from the outer-loop controllers quickly in the CF
methodwhenmaking a turn. It implies that the two con-
trol loops are not coordinated, which degrades the for-
mation tracking performance during the large maneu-
vering bank-to-turn. However, our proposed method is
capable ofmaking the two control loopswork synergis-
tically and achieving a coordinated turn, which ensures
good maneuverability for the whole formation flight.

6 Conclusion

The missile formation control problem with leader-
following formation structure in 3-D space is inves-
tigated in this paper. An integrated backstepping-based
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Fig. 8 Angular rates of followers. a Roll rates, b yaw rates, c
pitch rates
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Fig. 9 Control surface deflections of followers. a δxi , b δyi , c
δzi

control scheme is proposed to handle both forma-
tion control and attitude control in large maneuver-
ing flight. With the help of the command filters and
BSNN, the proposed formation control algorithm can
also deal with the state constraints, actuator satura-
tions and uncertain aerodynamic coefficients. The dis-
tributed formation control law guarantees that all the
states in the closed-loop systems are CSUUB, and the
formation tracking errors are small enough by appro-
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Fig. 10 Distance between each two missiles in the formation
using CF method
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Fig. 11 Position tracking errors using CF method
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Fig. 12 Velocity tracking errors using CF method

priately tuning the control parameters. Two numeri-
cal simulations illustrate the effectiveness of the pro-
posed formation control algorithm and the good per-
formance in the large maneuvering formation flight.
Future work may further investigate the problem of
formation transformation and obstacle avoidance in the
formation flight.
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