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a b s t r a c t

Path elongation is a basic means of adjusting the time for a curvature-constrained vehicle to reach
its destination, which is very common in the maneuvering control of high-speed vehicles or the
coordinated control of their fleet. This paper studies the path elongation problem of a Dubins vehicle
which moves in a two-dimensional plane and is subject to a maximum curvature. The aim of the
paper is to answer the following question arising from the path elongation of Dubins vehicles: Can
a Dubins vehicle reach a given destination by path elongation with a predefined path length? It is
discovered and proved by theoretical analysis that, when the destination point is located in a special
region, there is a special length interval for which no proper path exists. For all realizable length
intervals, we provide an example of feasible path patterns for expected elongation. The results provide
ideal reference trajectories with expected length for Dubins vehicles to follow for the sake of accurate
arrival-time control.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In the arrival-time control of autonomous vehicles, path elon-
gation is a very common, feasible and safe means of adjusting
the time to reach their destination, especially for meeting the
requirement of maneuvering control of high-speed vehicles or the
synchronization of arrival time of multiple cooperative vehicles.
In this paper, we are concerned with the following fundamental
problem about the path elongation of Dubins vehicle (Dubins,
1957):

Given an initial configuration and an endpoint, can a Dubins
vehicle with curvature constraints in a two-dimensional plane move
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from its initial configuration to a specified endpoint with an expected
path length?

The Dubins vehicle, with its position (x, y) ∈ R2, its heading
θ and control input u(|u| ≤ 1), can be modeled by the following
differential equation:⎛⎝ẋ

ẏ
θ̇

⎞⎠ =

⎛⎝vd cos θ

vd sin θ
vdu
rmin

⎞⎠ (1)

where vd and rmin are the speed and the minimum turning radius
of the Dubins vehicle, respectively. Assume that vd is a constant
in the model. ω = (x, y, θ ) ∈ SE(2) is called as Dubins con-
figuration (Bui & Boissonnat, 1994; Dubins, 1957). There is a
nonholonomic constraint in the Dubins model, that is −ẋ sin θ +

ẏ cos θ = 0, which means that the Dubins vehicle must move in
the direction of θ at each point. Dubins model has been success-
fully applied in different domains, such as terrestrial, aerial and
underwater vehicles (Babel, 2017; Cao, Cao, Zeng, & Lian, 2016;
Hernàndez, Moll, Vidal, Carreras, & Kavraki, 2016).

The shortest Dubins path can help the vehicle to save time and
energy, and is often used to solve the Dubins traveling salesman
problem (Zhang, Chen, Xin, & Peng, 2014). However, in order to
satisfy the mission requirement (e.g., rendezvous Cao, Cao, Zeng,
Yao, & Lian, 2017 and surveillance Zhang et al., 2014), the vehicle
needs to timely arrive at its endpoint according to the given time
or the expected path length. Constrained by the constant speed
and the bounded curvature, the path length control method is of
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specially practical significance for Dubins vehicles (Yao, Qi, Zhao,
& Wan, 2017). Specially, this path prolongation problem is im-
portant to achieve coordination among multiple Dubins vehicles.
To implement cooperative tasks, multiple vehicles need to reach
their targets at the same time or at a certain time interval.

Several methods for elongating the bounded-curvature paths
have been reported in the literatures. Bui and Boissonnat (1994)
studied the accessibility region which a Dubins vehicle can reach
from its initial configuration by following an optimal path whose
length is no more than a given value. Schumacher, Chandler, Ras-
mussen, and Walker (2003) proposed path elongation strategies
based on insertion of straight line segments to the original path.
Shanmugavel, Tsourdos, Zbikowski, and White (2005) varied the
radius of circular arcs to change the length of the path and
achieve the simultaneous arrival of multiple unmanned aerial
vehicles (UAVs). Meyer, Isaiah, and Shima (2015) provided three
strategies to elongate Dubins paths for intercepting a moving
target at a given time. Ortiz, Kingston, and Langbort (2013) pro-
vided path elongation strategies regarding the path type which is
composed of two arcs connected by a straight line. Yao et al.
(2017) defined homotopy structures which ensure the mono-
tonicity of path length with respect to homotopy parameters.
They searched for Dubins paths with an expected length within
the homotopies. In addition, Jeon, Lee, and Tahk (2016), based
on optimal control theory, derived a closed form of the Impact
Time Control Guidance (ITCG) which can guide a Dubins vehicle
to reach a stationary target at a preset time.

It can be seen that the previous works about path elongation
mainly focus on how to prolong Dubins path. In this paper,
we discuss a fundamental theoretical problem about the path
elongatability problem (i.e., the realizability of the curvature-
constrained paths for a Dubins vehicle with free terminal heading
by any given length). The Dubins path with free terminal head-
ing, proposed by Bui and Boissonnat (1994), refers to a Dubins
path whose initial configuration and endpoint are fixed but the
terminal heading is free.

The main contribution of this paper is that we prove that a
Dubins vehicle with free terminal heading cannot realize the path
elongation to an arbitrary length, and there is an unrealizable
length interval when the endpoint is located in a special region
(see Theorem 6). For all realizable length intervals, an example
of feasible path patterns for expected elongation is provided. In
addition, we further extend our theoretical results to the case of
a Dubins vehicle with variable bounded speed (see Corollary 1).

The remainder of this paper is structured as follows. Math-
ematical preliminaries and proof outline are given in Section 2.
Section 3 and Section 4 discuss the path elongation problem
according to different locations of the endpoint. Section 5 sum-
marizes the main results and makes an extension to the case of
a Dubins vehicle with bounded speed. Section 6 concludes the
paper.

2. Preliminaries and proof outline

2.1. Notation

Denote by γ the path of the Dubins vehicle which follows
Eq. (1). The problem proposed in Section 1 can be restated as the
following question:

Q1: Suppose that the initial configuration of the Dubins vehicle is
ω0 = (0, 0, π/2). Given an endpoint P and a path length d which
is larger than the shortest path length dmin, can γ go from ω0 to
P satisfying that the length of γ is d?

Fig. 1. Division of the entire two-dimensional plane.

Remark 1. Consider that when ω0 = (x0, y0, δ), P = (xP , yP )
can be transformed into a coordinate of PT = (xPT , yPT ) in a new
coordinate system where the initial configuration of the Dubins
vehicle is (0, 0, π/2). Therefore, we set ω0 = (0, 0, π/2). The
coordinate transformation can be found in Zeng, Dou, and Xin
(2018).

To answer Q1, some special circles and corresponding regions
are defined in the following. The minimal left-turning circle CL
tangent to the left of y-axis is defined as CL = {(x, y) : (x+rmin)2+
y2 = r2min}. Let ΩL be the closed region bounded by CL. Analogous
interpretations apply for the minimal right-turning circle CR and
ΩR. The extended left circle CEL has the same center with CL but
a radius of 3rmin. Let ΩEL be the closed region bounded by CEL.
Analogous interpretations apply for the extended right circle CER
and ΩER for CR.

The interior and boundary of a set X in a topological space
are denoted by int(X) and ∂(X), respectively. For convenience of
discussing Q1, the entire two-dimensional plane Ω is divided into
three regions which are denoted by DI , DII and DIII , respectively
(see Fig. 1). Region DI is defined as DI = {(x, y) : (x, y) ∈

int(ΩL
⋃

ΩR)}. Region DII is defined as DII = {(x, y) : (x, y) ∈

Ω − int(Ω+

⋃
ΩL

⋃
ΩR)}, where region Ω+ is defined as Ω+ =

{(x, y) : (x, y) ∈ ΩEL
⋂

ΩER and y ≥ 0}. Region DIII is defined as
DIII = {(x, y) : (x, y) ∈ Ω − DI

⋃
DII}.

2.2. Dubins path

Dubins (1957) found that any Dubins path is composed of a
finite set of circle arcs and straight lines. To specify admissible
paths, we introduce three elementary path patterns.

• The left-turning arc, denoted by LrθL , means that the Dubins
vehicle turns an angle θL along its left-turning circle whose
radius is r (r ≥ rmin). In this case, 0 < u ≤ 1.

• The straight line segment, denoted by S, means that the
Dubins vehicle moves along a straight line to the endpoint
or the starting point of the next path segment. In this case,
u = 0.

• The right-turning arc, denoted by Rr
θR
, means that the Dubins

vehicle turns an angle θR along its right-turning circle whose
radius is r(r ≥ rmin). In this case, −1 ≤ u < 0.

The Dubins path can be represented by combining the elemen-
tary path patterns defined above. The length of a Dubins path can
be regarded as a function of the path patterns and is denoted by
L (·), e.g., L (Lrmin

θ Rr
−
S).

Remark 2. The symbol ‘‘−’’ used in the composite path pattern
Lrmin
θ Rr

−
S and the other descriptions in the sequel implies that,
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given the other parameters in the path pattern, the turning angle
for the corresponding turning arc takes a default value which can
be determined uniquely and easily. In this way, it is highlighted
that the corresponding angle is not a control parameter for the
path pattern.

As the shortest Dubins path is an important reference for path
elongation, the following lemma is introduced to expound its
possible patterns.

Lemma 1 (Bui & Boissonnat, 1994). The patterns of the shortest
Dubins path with free terminal heading include the following cases:

• For P ∈ DI , the shortest Dubins path is Rrmin
θ∗
L

Lrmin
− (xP ≤ 0) or

Lrmin
θ∗
R

Rrmin
− (xP > 0);

• For P /∈ DI , the shortest Dubins path is Lrmin
− S (xP ≤ 0) or Rrmin

− S
(xP > 0).

Remark 3. In the rest of this paper, we assume that P is in
the right-half plane. According to the symmetry implied in the
theoretical results, similar conclusions hold for the endpoints in
the left-half plane.

2.3. Proof outline

Our main results (Theorem 6) show the realizable path length
with respect to P in region D1, DII and DIII , respectively. An
interesting and important result is about the path elongatability
in the case of P ∈ DIII . In this case, two special paths λ−

and β− are defined (see Propositions 2 and 3). The path length
can be adjusted within the interval [dmin, L (λ−)]

⋃
[L (β−), +∞)

(see Propositions 1–3). To prove the inrealizability for the length
interval (L (λ−), L (β−)), we skillfully divide all γ s from ω0 to
P ∈ DIII into three types: Type I, Type II and Type III. A geometric
approach is used to prove that (1) the maximum path length of
the Type I paths is L (λ−) (see Theorem 3); (2) no Type II paths
exist (see Theorem 4); and (3) the minimum path length of Type
III paths is L (β−) (see Lemma 3 and Theorem 5). In particular,
Corollary 2.4 in Ayala (2017) (see Lemma 2 in this paper) supports
the proof by contradiction in Theorem 4. As a result, in the cases
of P ∈ DIII , there is a length interval (L (λ−), L (β−)) in which
no proper path exists. In the case of P ∈ DI

⋃
DII , we can use

analytical geometry to prove that the Dubins path length can be
elongated from dmin to an arbitrary length (see Theorems 1 and
2). In addition, the result of Theorem 6 can be easily extended to
the case that vd is bounded (Corollary 1).

3. Path elongatability in the case of P ∈ DI
⋃

DII

Considering DI
⋂

DII = ∅, results regarding Q1 are proved
with respect to the cases P ∈ DI and P ∈ DII in the following
two theorems, respectively.

Theorem 1. Given ω0 and P ∈ DI , the Dubins path length can be
elongated from dmin to an arbitrary length.

Proof. The shortest Dubins path can be described as Lrmin
θ∗
L

Rrmin
−

when P ∈ ΩL by Lemma 1, as shown in Fig. 2. When d > dmin, the
path pattern Lrmin

θL
Rrmin

− S can be used to elongate paths by adjusting
θL (θL ≥ θ∗

L ). It can be proved that the increase of θL will generate
a continuous elongation of the shortest path. Let the maximum
value of θL be π and the path length with respect to θL = π is
denoted by dI = L (Lrmin

π Rrmin
− S).

When d > dI , the path can be further elongated, relative to
Lrmin
π Rrmin

− S, by increasing the right-turning radius r , as shown in

Fig. 2. Path elongation strategies using the path pattern Lrmin
θL

Rrmin
− S and Lrmin

π Rr
−
S

for P ∈ DI , respectively.

Fig. 2. The resulting path pattern can be described as Lrmin
π Rr

−
S. It

is easy to prove that L (Lrmin
π Rr

−
S) monotonously increases with r ,

and L (Lrmin
π Rr

−
S) → ∞ when r → ∞. □

Theorem 2. Given ω0 and P ∈ DII , the Dubins path can be
elongated to an arbitrary length with the path pattern Lrmin

θL
Rrmin

− S
for dmin ≤ d ≤ dI by varying θL and with the path pattern Lrmin

π Rr
−
S

for d > dI by varying r.

Proof. Since the analytic formulas of the path length of Lrmin
θL

Rrmin
− S

and Lrmin
π Rr

−
S are the same as these in Theorem 1, this theorem

can be regarded as a direct extension of Theorem 1. In addition,
when P ∈ DII , the pattern of the shortest Dubins path is Rrmin

− S (Bui
& Boissonnat, 1994). The pattern Rrmin

− S can be regarded as a
degenerate version of Lrmin

θL
Rrmin

− S when θL = 0. So the parameter
θL of the pattern Lrmin

θL
Rrmin

− S satisfies θL ∈ [0, π]. □

4. Path elongatability in the case of P ∈ DIII

Proposition 1 (Lemma 8 in Meyer et al. (2015)). If the Dubins
vehicle moves from ω0 to P ∈ DIII , increasing the turning radius r
of Rr

−
S will generate a continuous elongation of the shortest path.

However, the parameter r of Rr
−
S has an upper bound rM which

corresponds to a degenerate version of this pattern, represented by
RrM

− , including only one circular arc.

When P ∈ DIII , the shortest Dubins path is Rrmin
− S accord-

ing to Lemma 1. According to Proposition 1, the length interval
[dmin, L (RrM

− )] is realizable, so what we are concerned next is the
realizability of the interval (L (RrM

− ), +∞) for P ∈ DIII .
The path pattern Lrmin

θL
Rr

−
can be used to achieve further elon-

gation. To facilitate analysis, the x–y coordinate system needs
to be transformed into a polar coordinate system whose origin
is the center of CL, denoted by O1. The angle between

−→
O1P and

the positive x-axis is denoted by ξ , and the Euclidean distance
between P and O1 is denoted by ρ, as shown in Fig. 3. The
different relationship between θL and ξ will lead to different
feasible elongation schemes (see Fig. 3). For clarity, the pattern
Lrmin
θL

Rr
−

will be briefly denoted as Lrmin
− Rr

−
to highlight that r is

the unique parameter for the path pattern. Note that, once the
parameter r is determined for a given path length, the value of
θL can be determined uniquely. The following two propositions
will discuss the path elongatability with respect to the two cases
θL ≤ ξ and θL > ξ , respectively.

Proposition 2. For a given initial configuration ω0 and an endpoint
P ∈ DIII , in the case of θL ≤ ξ , increasing the parameter r in the
path pattern Lrmin

− Rr
−
will generate a limited elongation from L (RrM

− )
to L (Lrmin

θL
Rrmin

− ). Denote the path Lrmin
θL

Rrmin
− by a concise symbol λ−
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Fig. 3. Path elongation strategies using the path pattern Lrmin
− Rr

−
for P ∈ DIII . The

black and red solid curves represent elongated paths by changing r in the case
of θL ≤ ξ and θL > ξ , respectively.

and its length is

L (λ−) = rmin

[
ξ − arccos

(
ρ2

+ 3r2min

4ρrmin

)
+ arccos

(
5r2min − ρ2

4r2min

)]
.

(2)

Proposition 3. For a given initial configuration ω0 and an endpoint
P ∈ DIII , in the case of θL > ξ , L (Lrmin

− Rr
−
) monotonically increases

with r and limr→∞ L (Lrmin
− Rr

−
) = ∞. L (Lrmin

− Rr
−
) will reach its

minimum value when r = rmin. Denote the path Lrmin
− Rrmin

− by a
concise symbol β− and its length is

L (β−) = rmin

[
ξ + arccos

(
ρ2

+ 3r2min

4ρrmin

)
+2π − arccos

(
5r2min − ρ2

4r2min

)]
.

(3)

Propositions 2 and 3 can be easily proved by analyzing the
monotonicity of L (Lrmin

− Rr
−
) with r in the case of θL > ξ and

θL ≤ ξ , respectively. By Propositions 1–3, the realizable length in-
terval of the pattern L (Lrmin

− Rr
−
) is [dmin, L (λ−)]

⋃
[L (β−), +∞).

Therefore, when P ∈ DIII , the path length can be adjusted within
the interval [dmin, L (λ−)] and [L (β−), +∞). It can be verified
that L (λ−) < L (β−) for P ∈ DIII (xp ≥ 0). Now, we are especially
interested in the following question:

Q2: Can a bounded-curvature path γ go from ω0 to reach an
endpoint in DIII with d ∈ (L (λ−), L (β−))?

Definition 1 (Another Definition for Dubins Path in Dubins (1957)).
Given an initial configuration ω0 and an endpoint P = (xP , yP ), a
path γ : [0, s] → R2 connecting ω0 and P is a bounded-curvature
path if:

• γ is C1 and piecewise C2 where C1 stands for a continuous
function that has continuous first derivatives and piece-
wise C2 stands for a continuous function that has piecewise
continuous second derivatives.

• γ is parameterized by arc length s.
• γ (0) = (0, 0); γ (s) = (xP , yP ).
• The curvature ∥γ ′′(t)∥ ≤ 1/rmin, for all t ∈ [0, s] when

defined.

Definition 2 (Ayala, 2017). Given an area Ω , a path γ : [0, s] →

R2 is in Ω if γ (t) ⊂ Ω for all t ∈ [0, s]. Otherwise, γ is not in
area Ω .

Fig. 4. Regions ℜ1 , ℜ2 and A.

Definition 3 (Ayala, 2017). Given a point P ∈ R2 and a maximum
curvature kmax = 1/rmin, the space of the bounded-curvature
paths which go from ω0 and end at P is denoted by Σ(O, P).

In the case of P ∈ DIII , there are two circles with radius
r = rmin which pass through P and are tangent to CL. Correspond-
ingly, there exist two paths from ω0 to P whose path pattern is
Rrmin

θR
Lrmin
− . One path Rrmin

θR1
Lrmin
− is denoted by λ+, and the other path

Rrmin
θR2

Lrmin
− is denoted by β+, where θR1 ≤ θR2 (see Fig. 4).

We use A to denote the closed region bounded by curve λ+

and curve λ−, using ℜ1 to denote the closed region bounded by
curve λ+ and curve β+, and using ℜ2 to denote the closed region
bounded by curve λ− and curve β−, as shown in Fig. 4. To answer
Q2, all bounded-curvature paths γ with γ ∈ Σ(O, P) are divided
into three types:

• Type I: γ in A;
• Type II: γ in A

⋃
int(ℜ1

⋃
ℜ2) but not in A;

• Type III: γ not in A
⋃

int(ℜ1
⋃

ℜ2).

Denote the sets of Type I, Type II and Type III paths by ΓI , ΓII
and ΓIII , respectively. We conjecture that when P ∈ DIII , there is
no path γ ∈ Σ(O, P) with its path length d ∈ (L (λ−), L (β−)).
To verify this conjecture, the proof will be demonstrated in the
following steps:

(1) Prove that the maximum path length of γ ∈ ΓI is L (λ−).
(See Section 4.1)

(2) Prove that ΓII = ∅. (See Section 4.2)
(3) Prove that the minimum path length of γ ∈ ΓIII is L (β−).

(See Section 4.3)

4.1. The maximum path length of Type I paths

To find the maximum length for Type I paths, we are inspired
by the proof strategy in Howard and Treibergs (1995) to prove
that γ and λ− have a common perpendicular at first, and then
prove L (γ ) ≤ L (λ−).

Theorem 3. The maximum length of bounded-curvature paths γ

in A with γ ∈ Σ(O, P) is L (λ−).

The proof is postponed to Appendix A.

4.2. Inexistence of Type II paths

Lemma 2 (Corollary 2.4 in Ayala (2017)). Suppose a bounded-
curvature curve γ : [0, s] → R2 (its maximum curvature kmax =

1/rmin) satisfies:



Y. Ding, B. Xin and J. Chen / Automatica 108 (2019) 108495 5

Fig. 5. The bounded-curvature plane curves in A
⋃

int(S1) and A
⋃

int(S2),
respectively.

(1) γ (0), γ (s) are points on the x-axis.
(2) If CM is a circle with center on the negative y-axis and its

radius is rmin, and γ (0), γ (s) ∈ CM , then some point of γ lies
above CM .

Then there is a line joining two points in γ , which are at least 2rmin
apart.

Theorem 4. Any bounded-curvature curve γ : (0, s) → R2 with
γ ∈ Σ(O, P) which is in A

⋃
int(ℜ1) but not in A does not exist.

Proof. Denote by P+

b the joint point of the arc segments Rrmin
θR2

and
Lrmin
− of β+ (see Fig. 5). Denote by C1 the circle which is extended
from the arc Lrmin

− of β+. As shown in Fig. 5, C1 will intersect λ+

and Rrmin
θR2

at P+
c and P+

b , respectively. The arc ÜP+
c P+

b divides the
region int(ℜ1) into two subregions which are denoted by S1 and
S2, respectively. We add an auxiliary arc in S1 to connect P and
P+

b , and its curvature is 1/rmin, and the arc divides S1 into two
regions S11 and S21 .

The proof is by contradiction. Supposing that there exists
a curve γ which is in A

⋃
int(ℜ1) but not in A, we define a

bounded-curvature curve σ ⊂ γ
⋂

int(ℜ1), that is, σ is the part
of γ in ℜ1. It can be verified that σ satisfies the two conditions
in Lemma 2 if σ is only in S1, S2 or S2

⋃
S21 . However, for any

line joining two points X, Y in σ , the distance between X and Y
satisfies |x–y| < 2rmin. The contradiction indicates that σ does
not exist.

Suppose that σ passes through S2, S11 and S21 . We define a
bounded-curvature curve σ1 ⊂ σ

⋂
S21 . It can be verified that σ1

satisfies the two conditions in Lemma 2 and |x–y| < 2rmin for any
line joining the two points X, Y in σ1. So σ1 does not exist in this
case, either. □

In the same way, we can easily derive that any bounded-
curvature curve γ : (0, s) → R2 with γ ∈ Σ(O, P) which is in
A

⋃
int(ℜ2) but not in A does not exist. Therefore, Type II paths

do not exist, that is, ΓII = ∅.

4.3. The minimum path length of Type III paths

Type III paths are the bounded curvature paths γ with γ ∈

Σ(O, P) which are not in A
⋃

int(ℜ1
⋃

ℜ2), implying that ∃Pm ∈

γ : Pm /∈ A
⋃

int(ℜ1
⋃

ℜ2), equivalently, ∃Pm ∈ γ : Pm ∈

Ω − A
⋃

int(ℜ1
⋃

ℜ2).
Denote by C2 the circle which is extended from β−

2 . Denote
by P−

b the intersection point of the two arc segments of β−, as
shown in Fig. 7. Similarly, define P+

b , P−
a and P+

a for β+, λ− and λ+,

Fig. 6. An illustration of Type III path when C2
⋂

CR = ∅ . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. An illustration of Type III path when C2
⋂

CR ̸= ∅ . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

respectively. Define the set S0 = A
⋃

int(ℜ1
⋃

ℜ2)
⋃ ÜP+

a P+

b
⋃

ÜP−
a P−

b .
In the case of C2

⋂
CR ̸= ∅, define C2

⋂
CR = {P+

F , P−

F } with
̸ P+

F O2O ≤ ̸ P−

F O2O. Before γ finally reaches the endpoint P , γ
must pass through the closed area surrounded by the three arcsÚOP−

b , ÚOP+

F and ÜP−

b P+

F (see the blue shadow area in Fig. 7). Due
to the constraint of the maximum curvature, γ needs to pass
through ÜP−

b P+

F . The first point of γ across ÜP−

b P+

F is denoted by
Q . Obviously, γQ ⊂ S0.

In the case of C2
⋂

CR = ∅, define C1
⋂

C2 = {P3, P4} with
P3 = (x3, y3), P4 = (x4, y4) and y3 ≥ y4. Before γ finally reaches
the endpoint P , γ must pass through the closed area surrounded
by the four arcs ÚOP−

b , ÚOP+

b , ÛP+

b P4 and ÛP−

b P4 (see the blue shadow
area in Fig. 6). Due to the constraint of the maximum curvature, γ
needs to pass through ÛP−

b P4 or ÛP+

b P4 to arrive at P . The first point

of γ across ÛP−

b P4 or ÛP+

b P4 is denoted by Q . Denote by γQ the part
of γ from ω0 to Q and denote by γP the part of γ from Q to
P . Obviously γQ ⊂ S0. The intersection region of the two disks
with radius rmin joining P and Q is denoted by RI (P,Q ). Similarly,
RI (P+

F , P−

F ) is defined.
Before discussing the minimum length for Type III paths, we

introduce the following Lemma.

Lemma 3. Given γ ∈ ΓIII and an endpoint P ∈ DIII , if γP is not in
RI (Q , P), then L (γ ) ≥ L (β−) holds.

The proof of this lemma is postponed to Appendix B. The
following theorem discusses the minimum length for Type III
paths.

Theorem 5. L (γ ) ≥ L (β−), ∀γ ∈ ΓIII .
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Table 1
An example of path elongation schemes when the endpoint is located in the
right-half plane.
Region Length interval Typical path Adjustable

pattern parameters

DI
[dmin, dI ) Lrmin

θL
Rrmin

− S θL ∈ [θ∗

L , π )
[dI , +∞) Lrmin

π Rr
−
S r ∈ [rmin, +∞)

DII
[dmin, dI ) Lrmin

θL
Rrmin

− S θL ∈ [0, π )
[dI , +∞) Lrmin

π Rr
−
S r ∈ [rmin, +∞)

DIII

[dmin, L (RrM
− )] Rr

−
S r ∈ [rmin, rM ]

(L (RrM
− ), L (λ−)] Lrmin

− Rr
−

r ∈ (rmin, rM ]

(L (λ−), L (β−)) Unrealizable not available

[L (β−), +∞) Lrmin
− Rr

−
r ∈ [rmin, +∞)

Proof. To find the minimum path length for Type III paths, two
cases are discussed as follows:

Case 1 (C2
⋂

CR ̸= ∅). When γP is not in RI (Q , P), Lemma 3
implies that L (γ ) ≥ L (β−). However, when γP is in RI (Q , P),
γP ⊂ RI (Q , P). Define SF = RI (P+

F , P−

F )−CR (the region SF is shown
as the orange shadow area in Fig. 7), such that SF

⋂
S0 = ∅.

Since γQ ⊂ S0 and γ
⋂

(Ω − S0) ̸= ∅, ∃Pm ∈ γP : Pm ∈ SF . It
can be verified that the shortest Dubins path from ω0 to Pm is
no less than L (β−) by their geometrical relationship. Therefore,
L (γ ) ≥ L (β−).

Case 2 (C2
⋂

CR = ∅). Obviously RI (Q , P) ⊂ S0. Since γ
⋂

(Ω −

S0) ̸= ∅ and γQ ⊂ S0, γP
⋂

(Ω − S0) ̸= ∅. It implies γP
⋂

(Ω −

RI (Q , P)) ̸= ∅, that is, γP is not in RI (Q , P), as shown in Fig. 6.
Lemma 3 implies L (γ ) ≥ L (β−).

If P4 = P = Q , then RI (Q , P) = ∅. The shortest length for a
closed bounded-curvature curve from Q to Q is 2πrmin (Theorem
4.14 in Ayala (2017)). Therefore, L (γ ) ≥ 2πrmin + γ ∗

Q ≥ L (β−),
where γ ∗

Q is the shortest Dubins path from ω0 to Q . □

5. Summary and extension

5.1. Main results

According to the discussions in Sections 3 and 4, the main
results in this paper are summarized as follows:

Theorem 6. Given ω0 and P ∈ R2, if P ∈ DIII , then there is a
length interval (L (λ−), L (β−)) for which no proper Dubins path
exists; otherwise, the Dubins path can be elongated by an arbitrary
expected length.

Proof. Since DI
⋃

DII = Ω − DIII , the Dubins path can be
elongated by an arbitrary expected path length if P ∈ Ω − DIII
by Theorems 1 and 2. If P ∈ DIII , by applying Theorems 3–5, it
can be concluded that there is a length interval (L (λ−), L (β−))
for which no proper Dubins path exists. □

According to the classification of situations with regard to the
location of endpoints and the interval of expected path lengths, a
typical example of feasible path patterns for expected elongation
is presented in Table 1 when P is located in the right-half plane.
In view of the symmetry of the results, through exchanging the
pattern notations L and R as shown in Table 1, the conclusions
can be easily obtained when P is located in the left-half plane.
In addition, in the case of P ∈ DIII , different P may lead to
different interval lengths for the normalized inrealizable interval
(L (λ−), L (β−)). Fig. 8 shows the normalized interval length ∆ =

(L (β−) − L (λ−))/rmin as a function of P/rmin.

Fig. 8. Normalized length of inrealizable interval ∆ as a function of normalized
position P/rmin .

Fig. 9. Region of the endpoint for which there is an unrealizable length interval
in the case of bounded variable speed.

5.2. Extended results about bounded variable speed

Generally, the speed vd is constant in the model of Dubins
vehicle. However, our results can easily be extended to the case
that vd is bounded (vd ∈ [vl, vu] and 0 < vl ≤ vu). When vd
reaches its upper bound vu, rmin will reach its maximum (denoted
by ru) since rmin is proportional to vd. In this case, new DIII , λ− and
β− under rmin = ru can be obtained and denoted by Du

III , λ
−
u and

β−
u , respectively. Theorem 6 implies that there is an unreachable

length interval (L (λ−
u ), L (β−

u )) if P ∈ Du
III . In the same way, when

vd = vl, rmin will reach its minimum (denoted by rl). In this case,
new DIII , λ− and β− under rmin = rl can be denoted by Dl

III , λ−

l
and β−

l , respectively. According to Theorem 6, there is also an
unreachable length interval (L (λ−

l ), L (β−

l )) if P ∈ Dl
III .

Since Dl
III

⋂
Du
III ̸= ∅ (see Fig. 9), there is an unrealizable

length interval for which no proper path exists if P ∈ Dl
III

⋂
Du
III .

According to the monotonicity of L (λ−) and L (β−) with respect
to rmin (rmin ∈ [rl, ru]), it can be obtained that L (λ−

l ) > L (λ−
u )

and L (β−

l ) < L (β−
u ). Thus, the unrealizable length interval is

(L (λ−

l ), L (β−

l )). Therefore, we obtain the following corollary.

Corollary 1. Given ω0 and P ∈ R2, for vd ∈ [vl, vu], if P ∈

Dl
III

⋂
Du
III , then there is a length interval (L (λ−

l ), L (β−

l )) for which
no proper Dubins path exists. Otherwise, the Dubins path can be
elongated by an arbitrary expected path length.

5.3. Simulation

We present two simulation examples to demonstrate the path
elongation of a UAV modeled by Eq. (1) in the case of P ∈ DIII
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Fig. 10. Reference paths as well as trajectories generated by ITCG and their
control input u with respect to path length. (a) P = (0, 10) km, and (b) P = (0, 0)
km . (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

and P /∈ DIII . In the two examples, reference paths are generated
by the path elongation scheme presented in Table 1. The UAV
can stably follow the reference paths by a path following method
(e.g., Balluchi, Bicchi, and Souères (2005)). We also provide the
elongated paths generated by ITCG, proposed by Jeon et al. (2016),
which can drive UAV to reach the target at a given time.1

The UAV is initially at ω0 = (−0.9 km, −1.2 km, π/2) and
rmin = 1 km. In the first example, we set an endpoint P =

(0, 10) km and the desired length d = 25 km. It can be verified
that P is located in DII for the UAV with respect to ω0, so the
elongated paths exist according to Theorem 2. The reference
path with path pattern Lrmin

π Rr
−
S and the trajectory generated by

ITCG can be obtained (see the red and blue curves in Fig. 10(a),
respectively).

In the second example, we set P = (0, 0) km and d = 2 km. It
can be verified that P is located in DIII for the UAV with respect
to ω0 and d ∈ (L (λ−), L (β−)) = (1.68, 5.73) km, so UAV cannot
realize path elongation according to Theorem 6. If we implement
ITCG in this case, it can be observed that the UAV cannot arrive
at the target with d (see the blue curve in Fig. 10(b)), which is
consistent with the theoretical results presented in Theorem 6.
If d is reset as L (λ−) = 1.68 km, Proposition 2 implies that
the elongated paths exist. The reference path with path pattern
Lrmin
− Rr

−
and the path generated by ITCG can be obtained (see the

red and green curves in Fig. 10(b), respectively).

6. Conclusion

In this paper, we study the path elongation problem of a
Dubins vehicle from a given configuration to any destination
point in the two-dimensional plane. As the main contribution
of the paper, we discover and prove that, when the destination
point is located in DIII , there is a length interval for which no
proper path exists. For all realizable length intervals, we provide
an example of feasible path patterns for expected elongation. The
theoretical results obtained in this paper can be referenced to
adjust the path of a curvature-constrained vehicle to achieve the
time control for the vehicle to reach a given destination.

In future work, more feasible path patterns and elongation
schemes for expected elongation will be investigated. Besides, in

1 Note that the aim of presenting the results of ITCG is to demonstrate the
realizability of the Dubins paths with given lengths instead of comparison.

Fig. A.1. A common perpendicular with γ and λ− .

practice, there are some applications which may need to con-
strain the terminal heading (e.g., exploration or inspections in
which a camera or other sensor has to be pointed in a specific
orientation). In the future, the path elongation problem with
terminal heading constraint will be investigated.

Appendix A. Proof of Theorem 3

The heading angle for the bounded-curvature path γ with
γ ∈ Σ(O, P) is denoted by θ (s). θ (s) =

∫ s
0 k(t)dt +

π
2 . The x-

coordinate of γ is denoted by x(s). According to the nonholonomic
constraint of the Dubins vehicle model, dx/ds = cos θ , such that
x(s) =

∫ s
0 cos(θ (s))dt . The shortest path from ω0 to P is denoted by

λ and the length of its arc segment is denoted by α. By a rotation,
we may assume that λ(α) is the coordinate origin and the tangent
vector λ′(α) defines the positive x-axis. Let a and b (a < b) be
the x-coordinates of O and P , respectively, as shown in Fig. A.1.
γ ′(s) = exp(iθ (s)), and similarly (λ−)′(s) = exp(iθ−(s)). Let x1
(a < x1 < b) be the x-coordinate of the endpoint of the first
arc segment of λ−, as shown in Fig. A.1. According to the result
in Howard and Treibergs (1995) (see eq. (4.2) therein), we have

dθ
dx

=
dθ
ds

ds
dx

= k(s) sec θ, |k(s)| ≤ 1

dθ−

dx
=

dθ−

ds−
ds−

dx
=

{
+ sec θ−, if a < x < x1
− sec θ−, if x1 < x < b.

(A.1)

Since θ (0) = θ−(0), the comparison theorem for (A.1) implies
θ (x1) ≤ θ−(x1). Denote the second arc segment of λ− by µ−.
For each ζ ∈ [θ−(x1), θ−(b)], there is a unique x-coordinate ν(ζ )
where the heading angle of µ− is ζ . Consider the continuous
inner product function

f (x) = ⟨γ ′(x), µ−(ν(θ (x))) − γ (x)⟩

to measure the distance between the normal lines thru γ (x) and
µ− at points with parallel tangents, as shown in Fig. A.1. Observe
that f (x1) ≥ 0 and f (b) ≤ 0. By the intermediate value theorem,
there is an x2 ∈ [x1, b] where the normal lines of γ and µ−

coincide. Hence by a rotation, we may assume that this line is
the y-axis and x2 is the new coordinate origin denoted as O′.

Next we will show that L (λ−) ≥ L (γ ). It suffices to compare
the lengths of the parts corresponding to x ≥ 0 and x ≤ 0
separately. Let a (a ≤ 0) and b (b ≥ 0) again be the ending x-
coordinates of γ . Let x1(a < x1 < b) again be the x-coordinate of
the endpoint of the first arc segment of λ−.

Since θ (a) = θ−(a), the equality sin(θ (a)) = sin(θ−(a))
holds. Thus, from the comparison theorem, Eq. (A.1) implies
sin(θ−(x)) ≥ sin(θ (x)) (∀x ∈ (a, x1)), which further leads to the
inequality θ−(x) ≥ θ (x) (∀x ∈ (a, x1)). In the same way, it can
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be obtained that θ−(x) ≥ θ (x) (∀x ∈ (x1, 0]) and θ−(x) ≤ θ (x)
(∀x ∈ [0, b)). Hence,

ds−

dx
= sec(θ−(x)) ≥ sec(θ (x)) =

ds
dx

, ∀x ∈ (a, b). (A.2)

Since s−(a) = s(a) = 0, Eq. (A.2) implies that s−(b) ≥ s(b),
i.e., L (λ−) ≥ L (γ ). □

Appendix B. Proof of Lemma 3

In the case of Q ∈ C2, let L (β−

2 ) = L (β−) −
Ü
|QP−

b |. It can be
easily verified that L (β−

2 ) monotonically decreases with ρ, and
L (β−

2 ) → πrmin when ρ → 3rmin, such that L (β−

2 ) > πrmin, soÚ|PQ | ≤ 2πrmin − L (β−

2 ) < πrmin. Therefore, the minimal length
of γP is the length of the longer arc between P and Q (Corollary
4.15 in Ayala (2017)), that is ÜQP−

b P , as shown in Fig. 6. Therefore,

L (γ ) ≥
Ü

|QP−

b P| + L (γQ ) = L (γQ ) +
Ü
|QP−

b | + L (β−

2 ). (B.1)

Furthermore, the shortest Dubins path from ω0 to Q is denoted
by γ ∗

Q , such that L (γQ ) ≥ L (γ ∗

Q ). Since β−

1 is a convex arc and
γ ∗

Q
⋃ ÚQP−

b lies above β−

1 , L (β−

1 ) ≤
Ü
|QP−

b | + L (γ ∗

Q ) (Proposition 7
in Dubins (1957)). Therefore,

L (γ ) ≥ L (γ ∗

Q ) +
Ü
|QP−

b | + L (β−

2 ) ≥ L (β−

1 ) + L (β−

2 ) = L (β−).

(B.2)

In a similar way, it can be proved that L (γ ) ≥ L (β+) in the
case of Q ∈ C1. Consider that P ∈ DIII is located in the right half-
plane, it can be easily verified that L (β+) ≥ L (β−) according to
their analysis formulas. So L (γ ) ≥ L (β−). □
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