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The problem of stability analysis of neural networks with time-varying delay in a given range is
investigated in this Letter. By introducing a new Lyapunov functional which uses the information on the
lower bound of the delay sufficiently and an augmented Lyapunov functional which contains some triple-
integral terms, some improved delay-dependent stability criteria are derived using the free-weighting
matrices method. Numerical examples are presented to illustrate the less conservatism of the obtained
results and the effectiveness of the proposed method.
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1. Introduction

Neural networks have been applied in many areas such as pattern recognition, data mining, signal filtering, financial prediction and
adaptive control. Since there inevitably exist integration and communication delay, stability of the delayed neural network has been
extensively studied. Existing stability criteria can be classified into two categories, namely, delay-independent ones [1–4] and delay-
dependent ones [5–21]. Since delay-independent stability criteria are usually conservative than delay-dependent ones especially when the
delay is small, delay-dependent stability criteria have received much attention.

By introducing a new Lyapunov functional and using the S-procedure, a less conservative stability condition was put forward in [8].
In order to avoid the conservatism involve by model transformation and bounding techniques for cross terms, free-weighting matrices
method was used to derive stability criteria for neural networks with time-varying delay [9]. Results in [9] were further improved in
[10] by considering some useful terms which were ignored in previous results when estimating the upper bound on the derivative of
the Lyapunov functional. Using Jensen’s inequality, some simplified stability criteria were proposed [22]. These criteria were equivalent
to those in [10] but with less decision variables. By constructing an augmented Lyapunov functional, improved stability conditions have
been established in [23]. Using the relationship that d(t) + (h2 − d(t)) = h2 and (d(t) − h1) + (h2 − d(t)) = h2 − h1, some improved delay-
dependent stability criteria were proposed in [11]. However, the above results are still conservative to some extent and there exists room
for further improvement.

In practice, the lower bound of the delay is not always 0. Therefore, the delay considered in this Letter is assumed to belong to
a given interval. By introducing a new Lyapunov functional, less conservative results are obtained using the free-weighting matrices
method and the idea of convex combination [16]. Using the augmented Lyapunov functional approach, the obtained results are further
improved. Two numerical examples are given to show the effectiveness of the proposed method and the less conservatism of the obtained
results.
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2. Problem formulation and preliminaries

Consider the following neural network with time-varying interval delay:

ẋ(t) = −Cx(t) + Ag
(
x(t)

) + Bg
(
x
(
t − d(t)

)) + u (1)

where x(·) = [x1(·)x2(·) · · · xn(·)]T is the neuron state vector, g(x(·)) = [g1(x1(·))g2(x2(·)) · · · gn(xn(·))]T is the neuron activation function,
and u = [u1u2 · · · un]T is a constant input vector. C = diag{c1, c2, . . . , cn} with ci > 0, i = 1,2, . . . ,n, is a diagonal matrix representing
self-feedback term, A is the connection weight matrix and B is the delayed connection weight matrix. The delay d(t) is a time-varying
differentiable function satisfying

h1 � d(t) � h2 (2)

and

ḋ(t) � μ (3)

where h2 > h1 > 0, μ � 0 are constants. It is assumed that each neuron activation function, gi(·), i = 1,2, . . . ,n, is nondecreasing, bounded
and satisfying the following condition:

0 � gi(x) − gi(y)

x − y
� ki ∀x, y ∈ R, x �= y, i = 1,2, . . . ,n (4)

where ki , i = 1,2, . . . ,n are positive constants.
Assuming that x∗ = [x∗

1x∗
2 · · · x∗

n] is the equilibrium point of (1) and using the transformation z(·) = x(·) − x∗ , (1) can be converted to
the following error system:

ż(t) = −C z(t) + A f
(
z(t)

) + B f
(
z
(
t − τ (t)

))
(5)

where z(·) = [z1(·)z2(·) · · · zn(·)]T is the state vector, f (z(·)) = [ f1(z1(·)) f2(z2(·)) · · · fn(zn(·))]T , and f i(zi(·)) = gi(zi(·) + x∗
i ) − gi(x∗

i ),
i = 1,2, . . . ,n.

According to (4), one can obtained that the functions f i(·), i = 1,2, . . . ,n, satisfy the following condition:

0 � f i(zi)

zi
� ki, f i(0) = 0, ∀zi �= 0, i = 1,2, . . . ,n (6)

which is equivalent to

f i(zi)
[

f i(zi) − ki zi
]
� 0, f i(0) = 0, i = 1,2, . . . ,n. (7)

3. Main results

In this section, some new Lyapunov functionals are introduced and less conservative delay-dependent stability criteria are derived for
system (5) with time-varying delay satisfying (2)–(3).

3.1. New stability results

In previous works such as [11], the Lyapunov functional which uses the information on both the upper bound of the delay and the
lower bound of the delay is often of the following form:

V̄ (zt) = zT (t)P z(t) + 2
n∑

i=1

λi

zi∫
0

f i(s)ds +
t∫

t−d(t)

zT (s)Q 1z(s) +
t∫

t−d(t)

f T (
z(s)

)
Q 2 f

(
z(s)

) +
t∫

t−h1

zT (s)Q 3z(s)

+
t∫

t−h2

zT (s)Q 4z(s) +
0∫

−h2

t∫
t+θ

żT (s)Z1 ż(s)ds dθ +
−h1∫

−h2

t∫
t+θ

żT (s)Z2 ż(s)ds dθ. (8)

Although the lower bound of the delay, h1, is used in the above Lyapunov functional, we think that the lower bound of the delay, h1, is
not used sufficiently especially when h1 is not zero. In the above Lyapunov functional, the upper limit of some integral terms should be
t − h1 but not t and the lower limit of the outer integral of a double integral term should be h1 but not h2. In this Letter, a new kind of
Lyapunov functional being of the following form is proposed

V (zt) = zT (t)P z(t) + 2
n∑

i=1

λi

zi∫
0

f i(s)ds +
t−h1∫

t−d(t)

zT (s)Q 1z(s) +
t∫

t−d(t)

f T (
z(s)

)
Q 2 f

(
z(s)

) +
t∫

t−h1

zT (s)Q 3z(s)

+
t−h1∫

t−h2

zT (s)Q 4z(s) +
0∫

−h1

t∫
t+θ

żT (s)Z1 ż(s)ds dθ +
−h1∫

−h2

t∫
t+θ

żT (s)Z2 ż(s)ds dθ. (9)

Based on the Lyapunov functional (9), the following theorem presents a delay-dependent stability condition for system (5).
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Theorem 1. For given scalars h2 > h1 > 0 and μ � 0, system (5) is asymptotically stable for any time-varying delay satisfying (2)–(3) if there exist
matrices P > 0, Q j > 0, j = 1,2,3,4, Z1 > 0, Z2 > 0, Λ = diag{λ1, λ2, . . . , λn} � 0, and W i = diag{W1i, W2i, . . . , Wni} � 0, i = 1,2, and any
matrices N1 , N2 , M1 , M2 , S1 , and S2 with appropriate dimensions such that the following LMIs hold:

Φ1 =

⎡
⎢⎢⎣

Φ Γ Y h1N h12 S

∗ −Y 0 0

∗ ∗ −h1 Z1 0

∗ ∗ ∗ −h12 Z2

⎤
⎥⎥⎦ < 0, (10)

Φ2 =

⎡
⎢⎢⎣

Φ Γ Y h1N h12M

∗ −Y 0 0

∗ ∗ −h1 Z1 0

∗ ∗ ∗ −h12 Z2

⎤
⎥⎥⎦ < 0 (11)

where

Φ11 = −P C − C T P + Q 3 + N1 + N T
1 , Φ12 = N T

2 + M1 − S1, Φ13 = P A − C T Λ + K W1,

Φ22 = −(1 − μ)Q 1 − S2 − S T
2 + M2 + MT

2 , Φ33 = Q 2 − 2W1 + ΛA + AT ΛT , Φ44 = −(1 − μ)Q 2 − 2W2,

Φ55 = −Q 3 + Q 1 + Q 4, Y = h1 Z1 + h12 Z2, Γ = [−C 0 A B 0 0]T , N = [
N T

1 N T
2 0 0 0 0

]T
,

S = [
S T

1 S T
2 0 0 0 0

]T
, M = [

MT
1 MT

2 0 0 0 0
]T

, K = diag{k1,k2, . . . ,kn}, h12 = h2 − h1,

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 Φ13 P B S1 − N1 −M1

∗ Φ22 0 K W2 S2 − N2 −M2

∗ ∗ Φ33 ΛB 0 0

∗ ∗ ∗ Φ44 0 0

∗ ∗ ∗ ∗ Φ55 0

∗ ∗ ∗ ∗ ∗ −Q 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. Taking the derivative of V (zt) along the trajectories of system (5) yields

V̇ (zt) = 2zT (t)P ż(t) + 2
n∑

i=1

λi f i
(
zi(t)

)
żi(t) − (

1 − ḋ(t)
)
zT (

t − d(t)
)

Q 1z
(
t − d(t)

) + f T (
z(t)

)
Q 2 f

(
z(t)

)
− (

1 − ḋ(t)
)

f T (
z
(
t − d(t)

))
Q 2 f

(
z
(
t − d(t)

)) + zT (t)Q 3z(t) − zT (t − h1)(Q 3 − Q 1 − Q 4)z(t − h1)

− zT (t − h2)Q 4z(t − h2) + h1 żT (t)Z1 ż(t) −
t∫

t−h1

żT (s)Z1 ż(s)ds + h12 żT (t)Z2 ż(t) −
t−h1∫

t−h2

żT (s)Z2 ż(s)ds (12)

� 2zT (t)P ż(t) + 2 f T (
z(t)

)
Λż(t) − (1 − μ)zT (

t − d(t)
)

Q 1z
(
t − d(t)

) + f T (
z(t)

)
Q 2 f

(
z(t)

)
− (1 − μ) f T (

z
(
t − d(t)

))
Q 2 f

(
z
(
t − d(t)

)) + zT (t)Q 3z(t) − zT (t − h1)(Q 3 − Q 1 − Q 4)z(t − h1)

− zT (t − h2)Q 4z(t − h2) + h1 żT (t)Z1 ż(t) −
t∫

t−h1

żT (s)Z1 ż(s)ds

+ h12 żT (t)Z2 ż(t) −
t−h1∫

t−d(t)

żT (s)Z2 ż(s)ds −
t−d(t)∫

t−h2

żT (s)Z2 ż(s)ds. (13)

Similar to [11], the following equalities hold

0 = 2ξ T (t)N

[
z(t) − z(t − h1) −

t∫
t−h1

ż(s)ds

]
, (14)

0 = 2ξ T (t)S

[
z(t − h1) − z

(
t − d(t)

) t−h1∫
t−d(t)

ż(s)ds

]
(15)

and,
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0 = 2ξ T (t)M

[
z
(
t − d(t)

) − z(t − h2) −
t−d(t)∫

t−h2

ż(s)ds

]
(16)

where ξ(t) = [zT (t) zT (t − d(t)) f T (z(t)) f T (z(t − d(t))) zT (t − h1) zT (t − h2)]T . It is easy to see that

−2ξ T (t)N

t∫
t−h1

ż(s)ds � h1ξ
T (t)N Z−1

1 N T ξ(t) +
t∫

t−h1

żT (s)Z1 ż(s), (17)

−2ξ T (t)S

t−h1∫
t−d(t)

ż(s)ds �
(
d(t) − h1

)
ξ T (t)S Z−1

2 S T ξ(t) +
t−h1∫

t−d(t)

żT (s)Z2 ż(s) (18)

and

−2ξ T (t)M

t−d(t)∫
t−h2

ż(s)ds �
(
h2 − d(t)

)
ξ T (t)M Z−1

2 MT ξ(t) +
t−d(t)∫

t−h2

żT (s)Z2 ż(s). (19)

From (7), it can be obtained that

f i
(
zi(t)

)[
f i
(
zi(t)

) − ki zi(t)
]
� 0, i = 1,2, . . . ,n (20)

and

f i
(
zi

(
t − τ (t)

))[
f i
(
zi

(
t − τ (t)

)) − ki zi
(
t − τ (t)

)]
� 0, i = 1,2, . . . ,n. (21)

Clearly, the following inequality holds for any W i = diag{W1i, W2i, . . . , Wni} � 0, i = 1,2.

0 � −2
n∑

i=1

W i1 f i
(
zi(t)

)[
f i
(
zi(t)

) − ki zi(t)
] − 2

n∑
i=1

W i2 f i
(
zi

(
t − τ (t)

))[
f i
(
zi

(
t − τ (t)

)) − ki zi
(
t − τ (t)

)]
= 2zT (t)K W1 f

(
z(t)

) − 2 f T (
z(t)

)
W1 f

(
z(t)

) + 2zT (
t − τ (t)

)
K W2 f

(
z
(
t − τ (t)

)) − 2 f T (
z
(
t − τ (t)

))
W2 f

(
z
(
t − τ (t)

))
. (22)

Add the both sides of (14)–(16) and (22) to both sides of (13) and apply (17)–(19), and one can obtain that

V̇ (zt) � ξ T (t)Σξ(t) (23)

where

Σ = Φ + Γ Y Γ T + h1N Z−1
1 N T + (

d(t) − h1
)

S Z−1
2 S T + (

h2 − d(t)
)
M Z−1

2 MT .

Note that h1 � d(t) � h2, (d(t) − h1)S Z−1
2 S T + (h2 − d(t))M Z−1

2 MT can be seen as the convex combination of S Z−1
2 S T and M Z−1

2 MT on
d(t). Therefore, Σ < 0 holds if and only if

Φ + Γ Y Γ T + h1N Z−1
1 N T + h12 S Z−1

2 S T < 0 (24)

and

Φ + Γ Y Γ T + h1N Z−1
1 N T + h12M Z−1

2 MT < 0. (25)

By Schur complements, (24) is equivalent to Φ1 < 0 and (25) is equivalent to Φ2 < 0. Therefore, if Φ1 < 0 and Φ2 < 0, then
V̇ (zt) < −ε‖z(t)‖2 for a sufficiently small ε > 0 which means that system (5) is asymptotically stable according to the Lyapunov sta-
bility theory [25]. �
Remark 2. A new Lyapunov functional (9) is introduced where the information on the lower bound of the delay is used sufficiently. Based
on this Lyapunov functional, a new stability condition is developed, which will be illustrated to be less conservative than existing results
through some numerical examples.

When μ is unknown, Theorem 1 is inapplicable any more. For this case, the following rate-independent result can be obtained by
letting Q 1 = ε1 I and Q 2 = ε2 I with ε1 > 0 and ε2 > 0 being sufficient small scalars.

Corollary 3. For given scalars h2 > h1 > 0, system (5) is asymptotically stable for any time-varying delay satisfying (2) if there exist matrices P > 0,
Q j > 0, j = 3,4, Z1 > 0, Z2 > 0, Λ = diag{λ1, λ2, . . . , λn} � 0, and W i = diag{W1i, W2i, . . . , Wni} � 0, i = 1,2, and any matrices N1 , N2 , M1 ,
M2 , S1 , and S2 with appropriate dimensions such that the following LMIs hold:
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Φ̂1 =

⎡
⎢⎢⎣

Φ̂ Γ Y h1N h12 S

∗ −Y 0 0

∗ ∗ −h1 Z1 0

∗ ∗ ∗ −h12 Z2

⎤
⎥⎥⎦ < 0, (26)

Φ̂2 =

⎡
⎢⎢⎣

Φ̂ Γ Y h1N h12M

∗ −Y 0 0

∗ ∗ −h1 Z1 0

∗ ∗ ∗ −h12 Z2

⎤
⎥⎥⎦ < 0 (27)

where

Φ̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 Φ13 P B S1 − N1 −M1

∗ Φ̂22 0 K W2 S2 − N2 −M2

∗ ∗ Φ̂33 ΛB 0 0

∗ ∗ ∗ Φ̂44 0 0

∗ ∗ ∗ ∗ Φ̂55 0

∗ ∗ ∗ ∗ ∗ −Q 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

Φ̂22 = −S2 − S T
2 + M2 + MT

2 , Φ̂33 = −2W1 + ΛA + AT ΛT , Φ̂44 = −2W2, Φ̂55 = −Q 3 + Q 4

and the other terms are the same as defined in Theorem 1.

3.2. Further improvements

In this part, the results presented in the above are further improved by introducing an augmented Lyapunov functional which contains
some novel triple-integral terms.

The following augmented Lyapunov functional is introduced

Va(zt) = ηT (t)Pη(t) + 2
n∑

i=1

λi

zi∫
0

f i(s)ds +
t−h1∫

t−d(t)

zT (s)Q 1z(s) +
t∫

t−d(t)

f T (
z(s)

)
Q 2 f

(
z(s)

) +
t∫

t−h1

zT (s)Q 3z(s)

+
t−h1∫

t−h2

zT (s)Q 4z(s) +
t∫

t−h1

żT (s)Q 5 ż(s) +
t−h1∫

t−h2

żT (s)Q 6 ż(s) +
0∫

−h1

t∫
t+θ

żT (s)Z1 ż(s)ds dθ +
−h1∫

−h2

t∫
t+θ

żT (s)Z2 ż(s)ds dθ

+
0∫

−h1

t∫
t+θ

zT (s)Z3z(s)ds dθ +
−h1∫

−h2

t∫
t+θ

zT (s)Z4z(s)ds dθ +
0∫

−h1

0∫
θ

t∫
t+λ

żT (s)R1 ż(s)ds dλdθ

+
−h1∫

−h2

0∫
θ

t∫
t+λ

żT (s)R2 ż(s)ds dλdθ (28)

where ηT (t) = [zT (t) zT (t − h1) zT (t − h2)
∫ t

t−h1
zT (s)ds

∫ t−h1
t−h2

zT (s)ds].
Based on the above augmented Lyapunov functional (28), we have the following result.

Theorem 4. For given scalars h2 > h1 > 0 and μ � 0, system (5) is asymptotically stable for any time-varying delay satisfying (2) and (3) if there
exist matrices P = [Pij]5×5 > 0, Q j > 0, j = 1, . . . ,6, Zl > 0, l = 1, . . . ,4, Λ = diag{λ1, λ2, . . . , λn} � 0, and W i = diag{W1i, W2i, . . . , Wni} � 0,
i = 1,2, and any matrices N1 , N2 , M1 , M2 , S1 , and S2 with appropriate dimensions such that the following LMIs hold:

Θ1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ Γ Y
h2

1
2 L hδ H h1N h1Υ1 h12 S h12Υ2

∗ −Y 0 0 0 0 0 0

∗ ∗ −h2
1

2 R1 0 0 0 0 0

∗ ∗ ∗ −hδ R2 0 0 0 0

∗ ∗ ∗ ∗ −h1 Z1 0 0 0

∗ ∗ ∗ ∗ ∗ −h1 Z3 0 0

∗ ∗ ∗ ∗ ∗ ∗ −h12 Z2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (29)
∗ ∗ ∗ ∗ ∗ ∗ ∗ −h12 Z4
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Θ2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ Γ Y
h2

1
2 L hδ H h1N h1Υ1 h12M h12Υ2

∗ −Y 0 0 0 0 0 0

∗ ∗ −h2
1

2 R1 0 0 0 0 0

∗ ∗ ∗ −hδ R2 0 0 0 0

∗ ∗ ∗ ∗ −h1 Z1 0 0 0

∗ ∗ ∗ ∗ ∗ −h1 Z3 0 0

∗ ∗ ∗ ∗ ∗ ∗ −h12 Z2 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −h12 Z4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (30)

where

Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ11 Θ12 Θ13 P11 B Θ15 Θ16 P12 P13

∗ Θ22 0 K W2 S2 − N2 −M2 0 0

∗ ∗ Θ33 ΛB AT P12 AT P13 0 0

∗ ∗ ∗ Θ44 BT P12 BT P13 0 0

∗ ∗ ∗ ∗ Θ55 Θ56 P22 P23

∗ ∗ ∗ ∗ ∗ Θ66 P T
23 P33

∗ ∗ ∗ ∗ ∗ ∗ Q 6 − Q 5 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Θ11 = −P11C − C T P11 + Q 3 + h1 Z3 + h12 Z4 + N1 + N T
1 + h1L1 + h1LT

1 + h12 H1 + h12 H T
1 ,

Θ12 = N T
2 + M1 − S1 + h1LT

2 + h12 H T
2 , Θ13 = P11 A − C T Λ + K W1, Θ15 = −C T P12 − P14 + P15 + P T

24 − N1 + S1,

Θ16 = −C T P13 − P15 + P T
34 − M1, Θ22 = −(1 − μ)Q 1 − S2 − S T

2 + M2 + MT
2 , Θ33 = Q 2 − 2W1 + ΛA + AT ΛT ,

Θ44 = −(1 − μ)Q 2 − 2W2, Θ55 = −Q 3 + Q 1 + Q 4 − P24 − P T
24 + P T

25 + P T
25, Θ56 = −P25 − P T

34 + P T
35,

Θ66 = −Q 4 − P35 − P T
35, Y = Q 5 + h1 Z1 + h12 Z2 + h2

1

2
R1 + hδ R2, Γ = [−C 0 A B 0 0 0 0]T ,

N = [
N T

1 N T
2 0 0 0 0 0 0

]T
, S = [

S T
1 S T

2 0 0 0 0 0 0
]T

, M = [
MT

1 MT
2 0 0 0 0 0 0

]T
,

Υ1 = [
P T

14C − P44 − LT
1 LT

2 − P T
14 A − P T

14 B P44 − P45 P45 − P T
24 − P T

34

]
,

Υ2 = [
P T

15C − P45 − H T
1 H T

2 − P T
15 A − P T

15 B P55 − P45 P55 − P T
25 − P T

35

]
,

K = diag{k1,k2, . . . ,kn}, h12 = h2 − h1, hδ = (
h2

2 − h2
1

)
/2.

Proof. Taking the derivative of Va(zt) described by (28) along the trajectories of system (5) yields

V̇a(zt) = 2ηT (t)P η̇(t) + 2
n∑

i=1

λi f i
(
zi(t)

)
żi(t) − (

1 − ḋ(t)
)
zT (

t − d(t)
)

Q 1z
(
t − d(t)

) + f T (
z(t)

)
Q 2 f

(
z(t)

)
− (

1 − ḋ(t)
)

f T (
z
(
t − d(t)

))
Q 2 f

(
z
(
t − d(t)

)) + zT (t)Q 3z(t) − zT (t − h1)(Q 3 − Q 1 − Q 4)z(t − h1)

− zT (t − h2)Q 4z(t − h2) − żT (t − h1)(Q 5 − Q 6)ż(t − h1) + żT (t)Q 5 ż(t) − żT (t − h2)Q 6 ż(t − h2)

+ h1 żT (t)Z1 ż(t) −
t∫

t−h1

żT (s)Z1 ż(s)ds + h12 żT (t)Z2 ż(t) −
t−h1∫

t−h2

żT (s)Z2 ż(s)ds

+ h1zT (t)Z3z(t) −
t∫

t−h1

zT (s)Z3z(s)ds + h12zT (t)Z2z(t) −
t−h1∫

t−h2

zT (s)Z4z(s)ds

+ 1

2
h2

1 żT (t)R1 ż(t) −
0∫

−h1

t∫
t+θ

żT (s)R1 ż(s)ds dθ + hδ żT (t)R2 ż(t) −
−h1∫

−h2

t∫
t+θ

żT (s)R2 ż(s)ds dθ (31)

� 2ηT (t)P η̇(t) + 2 f T (
z(t)

)
Λż(t) − (1 − μ)zT (

t − d(t)
)

Q 1z
(
t − d(t)

) + f T (
z(t)

)
Q 2 f

(
z(t)

)
− (1 − μ) f T (

z
(
t − d(t)

))
Q 2 f

(
z
(
t − d(t)

)) + zT (t)Q 3z(t) − zT (t − h1)(Q 3 − Q 1 − Q 4)z(t − h1)

− zT (t − h2)Q 4z(t − h2) − żT (t − h1)(Q 5 − Q 6)ż(t − h1) + żT (t)Q 5 ż(t) − żT (t − h2)Q 6 ż(t − h2)

+ h1 żT (t)Z1 ż(t) −
t∫

żT (s)Z1 ż(s)ds + h12 żT (t)Z2 ż(t) −
t−h1∫

żT (s)Z2 ż(s)ds
t−h1 t−d(t)
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−
t−d(t)∫

t−h2

żT (s)Z2 ż(s)ds + h1zT (t)Z3z(t) −
t∫

t−h1

zT (s)Z3z(s)ds + h12zT (t)Z4z(t)

−
t−h1∫

t−h2

zT (s)Z2z(s)ds + 1

2
h2

1 żT (t)R1 ż(t) −
0∫

−h1

t∫
t+θ

żT (s)R1 ż(s)ds dθ

+ hδ żT (t)R2 ż(t) −
−h1∫

−h2

t∫
t+θ

żT (s)R2 ż(s)ds dθ. (32)

To deal with the double-integral terms − ∫ 0
−h1

∫ t
t+θ

żT (s)R1 ż(s)ds dθ and − ∫ −h1
−h2

∫ t
t+θ

żT (s)R2 ż(s)ds dθ in (32), the following two equations
are introduced

0 = 2ξ T (t)L

[
h1z(t) −

t∫
t−h1

z(s)ds −
0∫

−h1

t∫
t+θ

ż(s)ds dθ

]
(33)

and

0 = 2ξ T (t)H

[
h12z(t) −

t−d(t)∫
t−h2

z(s)ds −
t−h1∫

t−d(t)

z(s)ds −
−h1∫

−h2

t∫
t+θ

ż(s)ds dθ

]
. (34)

In addition, the following two inequalities hold

−2ξ T (t)L

0∫
−h1

t∫
t+θ

ż(s)ds dθ � 1

2
h2

1ξ
T (t)LR−1

1 LT ξ(t) +
0∫

−h1

t∫
t+θ

ż(s)R1 ż(s)ds dθ (35)

and

−2ξ T (t)H

−h1∫
−h2

t∫
t+θ

ż(s)ds dθ � hδξ
T (t)H R−1

2 H T ξ(t) +
−h1∫

−h2

t∫
t+θ

ż(s)R2 ż(s)ds dθ. (36)

Base on (33)–(36) and following a similar line to Theorem 1, the proof can be completed. �
Remark 5. Similarly, Theorem 4 can also be extended to deal with the case for unknown μ. Due to the limitation of the space, it is
omitted here.

Remark 6. Recently, a delay decomposition approach has been proposed in [26]. This scheme is very effective in the reduction of the con-
servatism. Combine the Lyapunov functional proposed in this Letter with the delay decomposition approach, and further less conservative
results can be obtained. Due to the limitation of the space, the details are omitted here.

4. Numerical examples

In this section, two numerical examples are presented to show the less conservatism of our results and the effectiveness of the
proposed method.

Example 1. Consider the following delayed neural network with [11,18]

C = diag{1.2769,0.6231,0.9230,0.4480},

A =
⎡
⎢⎣

−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785

−0.1311 0.3253 −0.9634 −0.5015

⎤
⎥⎦ ,

A1 =
⎡
⎢⎣

0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775

⎤
⎥⎦ ,

k1 = 0.1137, k2 = 0.1279, k3 = 0.7994, k4 = 0.2368.
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Table 1
Upper bounds on h2 for various h1 and μ.

h1 Methods μ = 0.5 μ = 0.9 Unknown μ

1 [11] 2.5802 2.2736 2.2393
[27] 1.8832 1.7657 1.7651
[28] 2.2958 1.9512 1.9224
Theorem 1 2.5848 2.3111 2.2770
Theorem 4 2.6869 2.3924 2.3540

2 [11] 2.7500 2.6468 2.6299
[27] 2.4340 2.4003 2.4001
[28] 2.5778 2.4849 2.4712
Theorem 1 2.7716 2.6670 2.6504
Theorem 4 2.8475 2.7375 2.7190

3 [11] 3.1733 3.1155 3.1042
[27] 3.0956 3.0682 3.0671
[28] 3.1321 3.0872 3.0786
Theorem 1 3.1772 3.1186 3.1072
Theorem 4 3.2429 3.1827 3.1711

Table 2
Upper bounds on h2 for various h1 and μ.

h1 Methods μ = 0.8 μ = 0.9 Unknown μ

0.5 [11] 1.3566 1.1689 1.0263
[27] 0.8262 0.8215 0.8183
[28] 1.1217 0.9984 0.9037
Theorem 1 1.3599 1.1786 1.0391
Theorem 4 1.3600 1.1786 1.0437

0.75 [11] 1.3856 1.2110 1.0803
[27] 0.9669 0.9625 0.9592
[28] 1.2213 1.1021 1.0102
Theorem 1 1.3990 1.2240 1.0885
Theorem 4 1.3990 1.2241 1.0972

1 [11] 1.4578 1.2887 1.1641
[27] 1.1152 1.1108 1.1075
[28] 1.3432 1.2238 1.1318
Theorem 1 1.4692 1.2944 1.1656
Theorem 4 1.4692 1.2948 1.1774

It is assumed that ḋ(t) � μ. The corresponding upper bounds on h2 for various μ and h1 calculated by Theorem 1 are listed in Table 1
compared with those in [11,27,28]. Table 1 also lists the results for unknown μ. It can be seen that results obtained by Theorem 1 in
this Letter are less conservative than those in [11,27,28] since a new Lyapunov functional which sufficiently uses the information on the
lower bound of the delay is introduced in the development of Theorem 1. It can also be seen that results obtained by Theorem 4 are
less conservative than those obtained by Theorem 1 because some triple-integral terms are introduced in the Lyapunov functional in the
derivation of the Theorem 4.

Theorem 4 is checked on an Intel Core (TM) 2Duo® processor at 2.20 GHz using Matlab LMI toolbox. The computation time for this
example is about 150.3 s.

Example 2. Consider the following delayed neural network with [24]

C =
[

1 0
0 1

]
, A =

[−1 0.5
0.5 −1.5

]
, B =

[−2 0.5
0.5 −2

]
, k1 = 0.4, k2 = 0.8.

The objective is to compute the upper bound of h2 for various h1 and μ. The compared results are listed in Table 2. It can be seen that
the method proposed in this Letter yields less conservative results than those in the literature. For this example, the computation time of
Theorem 4 is about 9.7 s.
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