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Abstract: This study is concerned with the stability analysis of systems with time-varying delay in a given interval.
A new type of augmented Lyapunov functional which contains some triple-integral terms is proposed.
By introducing free-weighting matrices, a new delay-range-dependent stability criterion is derived in terms of
linear matrix inequality. The rate-range of the delay is considered, so the stability criterion is also delay-rate-
range dependent. Numerical examples are given to illustrate the effectiveness of the proposed method.
1 Introduction
Time delay is encountered in many dynamic systems such as
chemical or process control systems and networked control
systems and is often the cause of instability and poor
performance [1–3]. The subject of stability analysis of systems
with time-varying delay has attracted considerable attention
during the past few years [4–9]. Since it is assumed that the
delay is unbounded, delay-independent criteria are usually
more conservative than delay dependent ones especially
when the time-delay is small. Therefore much attention has
been paid to the study of delay-dependent stability [10–18].

Most of existing delay-dependent stability criteria
are obtained using Lyapunov–Krasovskii approach or
Lyapunov–Razumikhin approach combined with model
transformations and bounding techniques for cross terms.
Among these results, the descriptor model transformation
method [19, 20] combined with Moon et al.’s inequality
[21] was the most efficient. In order to reduce the
conservativeness introduced by model transformation and
bounding techniques, a free-weighting matrices method
was introduced in [22] to derive delay dependent stability
criteria. A parameterised model transformation method was
combined with the free-weighting matrices method
to derive new delay-dependent stability criteria in [23].
These results were further improved in [24] using the
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augmented Lyapunov functional method. However, only
a constant delay was considered in [24]. Recently, some
less conservative results [25] have been obtained by
considering some useful terms when estimating the upper
bound on the derivative of the Lyapunov functional. And,
these results were further improved using the idea of
constructing an augmented Lyapunov functional in [26]. It
should be noted that the Lyapunov functional introduced
in the above literature only contain some integral terms and
double-integral terms, for example,

�t

t−t2
xT(s)Qx(s)ds and�0

−t2

�t

t+b
ẋT(s)Zẋ(s)dsdb. In our recent work [27], a new

type of Lyapunov functional containing a triple-integral
term has been introduced to derive delay-dependent
stability conditions for neutral time-delay systems.
However, only a constant delay case has been considered in
[27]. In this paper, the method in [27] is extended to deal
with systems with time-varying delays and less conservative
stability criteria are derived using the free-weighting
matrices method. Furthermore, the delay derivative is often
assumed to satisfy ḋ (t) ≤ m in the literature. The lower
bound on the delay derivative is not considered in the
literature. In this paper, the delay derivative is assumed to
belong to a given interval, that is, n ≤ ḋ (t) ≤ m , 1. The
lower bound information on the delay derivative is used in
the derivation and a delay-rate-range dependent stability
condition is obtained. Numerical examples are given to
demonstrate the effectiveness of the proposed method.
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2 Problem formulation and
main results
Consider the following linear system with time-varying delay

ẋ(t) = Ax(t) + A1x(t − d (t)), t . 0

x(t) = f(t), t [ [−t2, 0]
(1)

where x(t) [ Rn is the state vector; the initial condition
f(t) is a continuously differentiable vector-valued function;
A [ Rn×n and A1 [ Rn×n are constant system matrices;
d(t) is a time-varying differentiable function and satisfies

0 ≤ t1 ≤ d (t) , t2 (2)

n ≤ ḋ (t) ≤ m , 1 (3)

where t1, t2 , n and m are constants. Let t12 ¼ t2 2 t1

and ts = 1/2(t2
2 − t2

1). The following theorem presents a
sufficient stability condition for system (1).

Theorem 1: Given scalars 0 ≤ t1 , t2 and n ≤ m , 1,
system (1) with a time-varying delay satisfying (2) and (3) is
asymptotically stable if there exist matrices U1 . 0, U2 . 0,
P = [Pij]5×5 . 0, Q = [Qij]2×2 ≥ 0, Z = [Zij]2×2 ≥ 0,
R = [Rij]2×2 ≥ 0, W = [Wij]2×2 ≥ 0, X = [Xij]2×2 ≥ 0,
V = [Vij]8×8 ≥ 0, F = [Fij]8×8 ≥ 0, N, Y, S, H, L, M with
appropriate dimensions such that the following LMIs hold:

S
1

2
t2

2L tsH

w − 1

2
t2

2U1 0

w w −tsU2

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ , 0 (4)

L1 = V G1

w Z

[ ]
≥ 0 (5)

L2 = F G2

w X

[ ]
≥ 0 (6)

L3 = V + F G3

w Z + X

[ ]
≥ 0 (7)

where

S =
S1 S2

w S3

[ ]
+ Y+ YT − MAc − AT

c MT + t2V + t12F

S1 = diag{P11, −R11(1 − m), −W11, −Q11} +C1 +CT
1

S2 =

P11 +P12 P14 P15 P12

PT
14 P44 − R12 P45 PT

24

PT
15 PT

45 P55 − W12 PT
25

PT
12 P24 P25 P22 − Q12

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦
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S3 = diag P22 +
1

2
t2

2U1 + tsU2,

{

−R22/(1 − n), −W22, −Q22

}

Y = [N + t2L + t12H Y − N − S S

−Y 0 0 0 0]

Pij = Qij + Rij + Wij + t2Zij + t12Xij ,

j = 1, 2, i ≤ j

Ac = A A1 0 0 −I 0 0 0
[ ]

G1 = −C2 + L N
[ ]

G2 = H S
[ ]

G3 = −C2 + L + H Y
[ ]

C1 = PT
13 P34 P35 PT

23

[ ]T
I 0 0 −I

[ ]
C2 = P33 0 0 −P33 PT

13 P34 P35 PT
23

[ ]T

roof: Construct a Lyapunov functional as follows

(xt)

= zT(t)Pz(t) +
∫t

t−d (t)

@T(s)R@(s)ds

+
∫t

t−t1

@T(s)W@(s)ds +
∫t

t−t2

@T(s)Q@(s)ds

+
∫0

−t2

∫t

t+b

@T(s)Z@(s)dsdb+
∫−t1

−t2

∫t

t+b

@T(s)X@(s)dsdb

+
∫0

−t2

∫0

b

∫t

t+l

ẋT(s)U1ẋ(s)dsdldb

+
∫−t1

−t2

∫0

b

∫t

t+l

ẋT(s)U2ẋ(s)dsdldb (8)

here z(t) = col{x(t), x(t − t2),
�t

t−t2
x(s)ds, x(t − d (t)),

(t − t1)}, @(s) = col{x(s), ẋ(s)}. It is easy to see that there
xist two positive scalars d1 and d2 such that d1‖x(t)‖2 ≤
(xt) ≤ d2 sup−t≤u≤0{‖x(t + u)‖2, ‖ẋ(t + u)‖2}. Similar to

22, 24, 28], the following equalities hold

a1(t): = 2jT(t)N x(t) − x(t − d (t)) −
∫t

t−d (t)

ẋ(s) ds

[ ]
= 0

(9)

a2(t):= 2jT(t)Y x(t −d (t))−x(t −t2)−
∫t−d (t)

t−t2

ẋ(s)ds

[ ]
= 0

(10)

a3(t):= 2jT(t)S x(t −t1)−x(t −d (t))−
∫t−t1

t−d (t)

ẋ(s)ds

[ ]
= 0

(11)

a4(t) := 2jT(t)M[ẋ(t) − Ax(t) − A1x(t − d (t))] = 0 (12)
IET Control Theory Appl., 2010, Vol. 4, Iss. 4, pp. 683–689
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a5(t): = 2jT(t)L t2x(t) −
∫t−d (t)

t−t2

x(s)ds

[

−
∫t

t−d (t)

x(s) ds −
∫0

−t2

∫t

t+b

ẋ(s)dsdb

]
= 0 (13)

a6(t): = 2jT(t)H t12x(t) −
∫t−d (t)

t−t2

x(s)ds

[

−
∫t−t1

t−d (t)

x(s) ds −
∫−t1

−t2

∫t

t+b

ẋ(s)dsdb

]
= 0 (14)

a7(t): = t2j
T(t)V j(t) −

∫t

t−d (t)

jT(t)V j(t)ds

−
∫t−d (t)

t−t2

jT(t)V j(t)ds = 0 (15)

a8(t): = t12j
T(t)Fj(t) −

∫t−t1

t−d (t)

jT(t)Fj(t)ds

−
∫t−d (t)

t−t2

jT(t)Fj(t)ds = 0 (16)

where j(t) = col{x(t), x(t − d (t)), x(t − t1), x(t − t2), ẋ(t),
ẋ(t − d (t))(1 − ḋ (t)), ẋ(t − t1), ẋ(t − t2)}. Taking the time
derivative of V (xt) along the trajectory of (1) yields

V̇ (xt) = 2zT(t)P ż(t) + @T(t)(R + Q + W + t2Z)@(t)

− (1 − ḋ (t))@T(t − d (t))R@(t − d (t))

− @T(t − t2)Q@(t − t2) − @T(t − t1)W@(t − t1)

−
∫t

t−d (t)

@T(s)Z@(s)ds −
∫t−t1

t−d (t)

@T(s)X@(s)ds

−
∫t−d (t)

t−t2

@T(s)(Z + X )@(s)ds + t12@
T(t)X@(t)

+ 1

2
t2

2ẋT(t)U1ẋ(t) −
∫0

−t2

∫t

t+b

ẋT(s)U1ẋ(s)dsdb

+ ts ẋ
T(t)U2ẋ(t) −

∫−t1

−t2

∫t

t+b

ẋT(s)U2ẋ(s) dsdb

+
∑8

1

ai(t) (17)

Note that

−2jT(t)L

∫0

−t2

∫t

t+b

ẋ(s)dsdb ≤ 1

2
t2

2j
T(t)LU−1

1 LTj(t)

+
∫0

−t2

∫t

t+b

ẋT(s)U1ẋ(s)dsdb (18)
T Control Theory Appl., 2010, Vol. 4, Iss. 4, pp. 683–689
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−2jT(t)H

∫−t1

−t2

∫t

t+b

ẋ(s)dsdb ≤ tsj
T(t)HU−1

2 H Tj(t)

+
∫−t1

−t2

∫t

t+b

ẋT(s)U2ẋ(s)dsdb (19)

From (17)–(19), it can be seen that

V̇ (xt) ≤ jT(t) Š+ 1

2
t2

2LU−1
1 LT + tsHU−1

2 H T

[ ]
j(t)

−
∫t

t−d (t)

jT(t, s)L1j(t, s)ds

−
∫t−t1

t−d (t)

jT(t, s)L2j(t, s)ds

−
∫t−d (t)

t−t2

jT(t, s)L3j(t, s)ds

(20)

where

Š= Š1 S2

w Š3

[ ]
+Y+YT −MAc −AT

c MT + t2V + t12F

Š1 = diag{P11, −R11(1− ḋ (t)), −W11, −Q11}+C1 +CT
1

Š3 = diag P22 +
1

2
t2

2U1 + tsU2,

{

−R22/(1− ḋ (t)), −W22, −Q22

}

jT(t, s) = [jT(t) rT(s)]

Note that n ≤ ḋ (t) ≤ m, it is easy to obtain that Š , S. So, if
S+ (1/2)t2

2LU−1
1 LT + tsHU−1

2 H T
, 0 which is equivalent

to (4) by Schur complements, and Li ≥ 0 (i ¼ 1, 2, 3), then
system (1) is asymptotically stable according to Lyapunov
stability theory [29]. A

Remark 1: A new type of augmented Lyapunov functional
is introduced in this paper to derive a delay-range-dependent
and rate-range-dependent stability condition for linear
systems with time-varying delays. Furthermore, the
introduction of triple integral terms makes the term�t

t−t2
x(s)ds in z(t) play an important role in the reduction

of conservatism. Whereas in existing literature this term
does not contribute to the reduction of the conservativeness
such as in [24] or is not included in the augmented vector
of the Lyapunov functional such as in [26]. More
specifically, if

�t

t−t2
x(s)ds is not introduced in z(t), the

introduction of the triple-integral terms does not contribute
to further reduction in conservativeness. On the other
hand, if only the integral term

�t

t−t2
x(s)ds is introduced

in the augmented vector with the triple-integral term
omitted in the Lyapunov functional, then this Lyapunov
functional also does not lead to a less conservative result.
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Remark 2: It is not easy to extend the augmented Lyapunov
functional to systems with time-varying delays [26]. One of the
key problems is how to estimate the upper bound on the
derivative of the Lyapunov functional. In [26], a bounding
technique is used to estimate the derivative of V3p(xt)
(see (22) in [26]) which introduces some conservativeness and
makes the resulting condition unapplicable for
m ¼ 0. However, the method proposed in this paper is much
different. In the definition of j(t), it is ẋ(t − d (t))(1 − ḋ (t))
but not ẋ(t − d (t)) that is introduced which can absorb some
(1 − ḋ (t)). So, it can be seen that only two terms contain
(1 − ḋ (t)) in Š, which makes the estimation of the upper
bound of the derivative of the Lyapunov functional much easier.

Remark 3: The concerned time-varying delay is assumed to
belong to an interval. Furthermore, the delay derivative is also
assumed to belong to an interval. The obtained criterion is
dependent on both the delay-range and the delay-rate range.
The delay derivative in the previous results are usually
assumed to be ḋ (t) ≤ m. Because the lower bound on the
delay derivative is not considered, these results may be
conservative especially when the lower bound on the delay
derivative can be obtained or estimated. It should be noted
that the delay-rate range has been considered in [26].
However, the delay-derivative in [26] is restricted to
|ḋ (t)| ≤ m and 0 , m , 1. So if −2 ≤ ḋ (t) , 1, Theorem 3
in [26] is not applicable. Although Corollary 3 in [26] is
applicable for this case, it is just a rate-independent criterion
which is usually more conservative than rate-dependent ones.
Moreover, the restriction on the delay derivative in [26] may
result in additional conservativeness when the absolute value
of the lower bound on the delay derivative does not equal the
upper bound on the delay derivative even if they are both
smaller than 1. For example, if −0.1 ≤ ḋ (t) ≤ 0.5 or
−0.2 ≤ ḋ (t) ≤ 0.5, Theorem 3 in [26] will deal with these
two cases both as |ḋ (t)| ≤ 0.5. Clearly, it enlarges the
variation range of the delay derivative. So results in [26] may
lead to some conservativeness. However, Theorem 1
proposed in this paper can overcome this limitation because it
is dependent on the rate-range of the delay.

The information on the lower bound on the delay derivative,
n, has been used in Theorem 1. If this information cannot be
obtained or estimated, the assumption on the delay
derivative (3) should be changed as ḋ (t) ≤ m , 1 which is
similar to existing assumptions in the literature on the delay
derivative. For this case, choose a Lyapunov functional
candidate similar to (8) but with z(t) = col{x(t), x(t − t2),�t

t−t2
x(s)ds,x(t − t1)}, and define j(t) = col{x(t), x(t −

d (t)), x(t − t1), x(t − t2), ẋ(t), ẋ(t − d (t)), ẋ(t − t1), ẋ(t−
t2)}, then the following corollary can be obtained following
the similar approach to Theorem 1.

Corollary 1: Given scalars m and 0 ≤ t1 , t2, system (1)
with a time-varying delay satisfying (2) and ḋ (t) ≤ m , 1
is asymptotically stable if there exist matrices U1 ≥ 0,
U2 ≥ 0, P = [Pij]4×4 . 0, Q = [Qij]2×2 ≥ 0, Z =
6
The Institution of Engineering and Technology 2010
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[Zij]2×2 ≥ 0, R = [Zij]2×2 ≥ 0, W = [Wij]2×2 ≥ 0, X =
[Xij]2×2 ≥ 0, V̂ = [V̂ ij]8×8 ≥ 0, F̂ = [F̂ ij]8×8 ≥ 0, N̂ , Ŷ ,

Ŝ, Ĥ , L̂, M̂ with appropriate dimensions such that the
following LMIs hold

V
1

2
t 2

2 L̂ tsĤ

w − 1

2
t 2

2 U1 0

w w −tsU2

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ , 0 (21)

L̂1 = V̂ Ĝ1

w Z

[ ]
≥ 0 (22)

L̂2 = F̂ Ĝ2

w X

[ ]
≥ 0 (23)

L̂3 = V̂ + F̂ Ĝ3

w Z + X

[ ]
≥ 0 (24)

where

V=
V1 V2

w V3

[ ]
+ Ŷ+ Ŷ

T −M̂Âc − Â
T

c M̂
T +t2V̂ + t12F̂

V1 = diag{P̂11, −R11(1−m), −W11, −Q11}+ Ĉ1 +CT
1

V2 =

P11 + P̂12 0 P14 P12

0 P44 − (1−m)R12 0 0

PT
14 0 P44 −W12 PT

24

PT
12 0 P24 P22 −Q12

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

V3 = diag P̂22 +
1

2
t2

2U1 +tsU2,

{

−(1−m)R22, −W22, −Q22

}

Ŷ= [N̂ +t2L̂+t12Ĥ Ŷ − N̂ − Ŝ Ŝ − Ŷ 0 0 0 0]

P̂ij =Qij +Rij +Wij +t2Zij +t12Xij , j = 1, 2, i ≤ j

Âc = A A1 0 0 −I 0 0 0
[ ]

Ĝ1 = −Ĉ2 + L̂ N̂
[ ]

Ĝ2 = −Ĥ Ŝ
[ ]

Ĝ3 = −Ĉ2 + L̂+ Ĥ Ŷ
[ ]

Ĉ1 = PT
13 0 P34 PT

23

[ ]T
I 0 0 −I
[ ]

Ĉ2 = P33 0 0 −P33 PT
13 0 P34 PT

23

[ ]T

In many circumstances, the information of the delay
derivative may not be available. For this case, choose
a Lyapunov functional candidate which is similar to (8)
but with R ¼ 0 and z(t) = col{x(t), x(t − t2),

�t

t−t2
x(s)ds,

x(t − t1)}, and a rate-independent criterion can be
obtained from Theorem 1.

Corollary 2: Given scalars 0 ≤ t1 , t2, system (1) with a
time-varying delay satisfying (2) is asymptotically stable if
there exist matrices U1 ≥ 0, U2 ≥ 0, P = [Pij]4×4 . 0,
IET Control Theory Appl., 2010, Vol. 4, Iss. 4, pp. 683–689
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Q = [Qij]2×2 ≥ 0, Z = [Zij]2×2 ≥ 0, W = [Wij]2×2 ≥ 0,

X = [Xij]2×2 ≥ 0, Ṽ = [Ṽ ij]7×7 ≥ 0, F̃ = [F̃ ij]7×7 ≥ 0,

Ñ , Ỹ , S̃, H̃ , L̃, M̃ with appropriate dimensions such that
the following LMIs hold

Q
1

2
t2

2L̃ tsH̃

w − 1

2
t2

2U1 0

w w −tsU2

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ , 0 (25)

L̃1 = Ṽ G̃1

w Z

[ ]
≥ 0 (26)

L̃1 = F̃ G̃2

w X

[ ]
≥ 0 (27)

L̃3 = Ṽ + F̃ G̃3

w Z + X

[ ]
≥ 0 (28)

where

Q=
Q1 Q2

w Q3

[ ]
+ Ỹ+ Ỹ

T − M̃Ãc − Ã
T

c M̃
T + t2Ṽ + t12F̃

Q1 = diag{P̃11, 0, −W11, −Q11}+ C̃1 + C̃
T

1

Q2 =

P11 + P̃12 P14 P12

0 0 0

PT
14 P44 −W12 PT

24

PT
12 P24 P22 −Q12

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

Q3 = diag{P̃22 + 1/2t2
2U1 + tsU2, −W22, −Q22}

Ỹ= Ñ + t2L̃+ t12H̃ Ỹ − Ñ − S̃ S̃ −Ỹ 0 0 0
[ ]

P̃ij = Qij +Wij + t2Zij + t12Xij , j = 1, 2, i ≤ j

Âc = A A1 0 0 −I 0 0
[ ]

Ĝ1 = −Ĉ2 + L̂ N̂
[ ]

Ĝ2 = Ĥ Ŝ
[ ]

Ĝ3 = −Ĉ2 + L̂+ Ĥ Ŷ
[ ]

Ĉ1 = PT
13 0 P34 PT

23

[ ]T
I 0 0 −I

[ ]
Ĉ2 = P33 0 0 −P33 PT

13 0 P34 PT
23

[ ]T

3 Numerical examples
Example 1: Consider the following system with

A = −2 0
0 −0.9

[ ]
, A1 = −1 0

−1 −1

[ ]

Assume |ḋ (t)| ≤ m , 1. For various m, the maximum upper
bounds on delay (MUBDs), t2, such that the system is
asymptotically stable for a given lower bound, t1, are listed in
Table 1. Table 1 also compared the results with those in [18,
Control Theory Appl., 2010, Vol. 4, Iss. 4, pp. 683–689
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25, 26] for unknown m. If the delay derivative does not belong
to a symmetric interval, the MUBDs are listed in Table 2 for
t1 ¼ 0 and various delay derivative intervals. In Table 2, [a, b]
means that a ≤ ḋ (t) ≤ b. From Table 1 and 2, it can be
readily seen that our method achieves much bigger MUBDs.

In Table 2, we also list results obtained by using some
special cases of Theorem 1. If

�t

t−t2
x(s)ds is not introduced

in the augmented vector z(t) but only the triple-integral
terms are introduced in the Lyapunov functional, a special
case of Theorem 1 is obtained and is referred to as
Corollary 3. Similarly, if the triple-integral terms are
not introduced in the Lyapunov functional but
only

�t

t−t2
x(s)ds is introduced in the augmented vector,

another result can be obtained from Theorem 1 and is
referred to as Corollary 4. If the

�t

t−t2
x(s)ds and the triple-

integral terms are all removed from the Lyapunov
functional, another result can be obtained and is referred
to as Corollary 5. Owing to the limitation of space, these
three corollaries are omitted in this paper. Applying these
three corollaries to this example for asymmetric delay-
derivative intervals yields the same results but they are
more conservative than those obtained using Theorem
1. This fact illustrates the statement in Remark 1, that
is, the

�t

t−t2
x(s)ds and the triple-integral terms should

co-exist in the Lyapunov functional. This means that
both are required to achieve a further reduction of the
conservativeness. Furthermore, we can see that our results
are still less conservative than those in [26]. This is mainly
because a new method is used to estimate the upper bound
on the derivative of the Lyapunov functional just as stated
in Remark 2 and the information on the lower bound of
the delay derivative is fully used in our results just as
stated in Remark 3. Specifically, for the four cases of
asymmetric delay derivative interval listed in Table 2, He
et al. [26] deal with them as |ḋ (t)| , 1, |ḋ (t)| , 0.2,
|ḋ (t)| , 0.1 and |ḋ (t)| , 0.1, respectively. Clearly, it
enlarges the variation range of the delay derivative.
However, both the lower bound and the upper bound on
the delay derivative are used in our results. From Table 2,
it can be seen that for a given upper bound on the
delay derivative, m, the upper bound on delay, t2, increases
with the increase of the lower bound on the delay
derivative, n.

Example 2: Consider the following controlled plant

ẋ(t) = 0 −1
0 −0.1

[ ]
x(t) + 0

0.1

[ ]
u(t)

The above plant is assumed to be controlled over a
network. The state feedback controller is designed as
u(t) = [−3.75 −11.5]x(t) without considering the effects
of the network. When considering the effects of the
network, following the method in [9] the closed-loop
system is obtained as

ẋ(t) =
0 −1

0 −0.1

[ ]
x(t)+

0

0.1

[ ]
[−3.75 −11.5]x(t − d (t))
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Table 1 MUBDs with given t1 for different m

t1 Methods m ¼ 0.1 m ¼ 0.5 m ¼ 0.9 Unknown m

0 [25] 3.6053 2.0439 1.3789 1.3454

[26] 3.6053 2.0439 1.3789 1.3454

[18] 3.6053 2.0439 1.3789 1.3454

our results 3.9184 2.7156 2.3877 1.8680

3 [25] 3.6119 3.2234 3.2234 3.2234

[18] 3.6120 3.2260 3.2260 3.2260

our results 3.9184 3.3413 3.3413 3.3413

4 [25] 4.0643 4.0643 4.0643 4.0643

[18] 4.0649 4.0649 4.0649 4.0649

our results 4.1779 4.1779 4.1779 4.1779

5 [25] – – – –

[18] – – – –

our results 5.0383 5.0383 5.0383 5.0383

5.300499 [25] – – – –

[18] – – – –

our results 5.3005 5.3005 5.3005 5.3005
where d(t) denotes the network-induced delay from the sensor
to the actuator and is assumed to satisfy t1 ≤ d(t) ≤ t2. The
objective is to determine the maximum allowable transfer
interval (MATI), also called the maximum allowable delay
bound (MADB), that guarantees the asymptotic stability of
the above system. For given t1 ¼ 0, MATIs that guarantee
the asymptotic stability of the above plant controlled over a

Table 2 MUBDs for asymmetric delay-derivative interval

Methods [21,
0.1]

[20.2,
0.1]

[20.09,
0.1]

[20.05,
0.1]

[26] 1.3454 3.0391 3.6053 3.6053

corollaries
3–5

3.6582 3.6582 3.7670 4.0146

theorem 1 3.7660 3.7672 3.9785 4.2536

Table 3 MATIs obtained by different methods

Methods MATI

[31] 0.8695

[9] 0.8871

[30] 0.9412

[26] 1.0081

our results 1.0629
gineering and Technology 2010

ited to: BEIJING INSTITUTE OF TECHNOLOGY. Down
network are listed in Table 3. It is clear that the result in this
paper is an improvement over those in [9, 26, 30, 31].

4 Conclusion
In this paper, the stability of time-delay systems has been
investigated. New delay-dependent stability criteria have been
derived by introducing a new type of Lyapunov functional
and using the free-weighting-matrices method. The obtained
criteria have been shown to be less conservative than existing
ones. Numerical examples have been given to illustrate the
effectiveness of the proposed method.
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